Infrared and Laser Engineering, Volume. 52, Issue 4, 20230053(2023)

Compensation mechanism of primary mirror and the third mirror figure error of off-axis three-mirror telescope

Mingze Ma1,2, Xu He1, Jinxin Wang1,2, Jing Luo1, Tianxiao Xu1,2, Cui Lin1,2, and Haoran Zhou1,2
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(18)
    (a) Trajectory of incident light with a non-aperture mirror; (b) Pupil vector relation diagram at non-stop position
    Schematic diagram of optical layout of the off-axis TMA telescope and five fields of views used in aberration compensation
    Full field displays (FFDs) for astigmatism in different PM states
    FFDs for coma on PM in different PM states
    FFDs for RMS in different PM states
    FFDs for astigmatism in different TM states
    FFDs for coma in different TM states
    FFDs for RMS in different TM states
    The values of RMS before and after compensation of the five fields of view and the nominal state. (a) F1; (b) F2; (c) F3; (d) F4; (e) F5. Blue dots indicate the value of RMS when the TM surface figure error exists, pink dots indicate the value of RMS after compensation, and green dots indicate the RMS of the system in the nominal state
    • Table 1. Optical parameters of off-axis TMA telescope

      View table
      View in Article

      Table 1. Optical parameters of off-axis TMA telescope

      SurfaceConic constantRadius/mmThickness/mm
      PM−0.921−3600.41−1551.777
      SM−4.828−910.9031558.7
      TM−0.292−1219.431−1533.359
      ImageInfinity
    • Table 2. Wave aberration coefficients of SM for the off-axis TMA telescope (λ=632.8 nm)

      View table
      View in Article

      Table 2. Wave aberration coefficients of SM for the off-axis TMA telescope (λ=632.8 nm)

      Surface$W_{222,{\rm{SM}}}^{{\rm{sph}}}$/λ$W_{222,{\rm{SM}}}^{{\rm{asph}}}$/λ$W_{131,{\rm{SM}}}^{{\rm{sph}}}$/λ$W_{131,{\rm{SM}}}^{{\rm{asph}}}$/λ
      SM−28.2854.21196.86224.59
    • Table 3. Introduced Zernike coefficients for figure error on PM of the off-axis TMA system

      View table
      View in Article

      Table 3. Introduced Zernike coefficients for figure error on PM of the off-axis TMA system

      $C_5^{{\rm{PM}}}/\lambda$$C_6^{{\rm{PM}}}/\lambda$$C_7^{{\rm{PM}}}/\lambda$$C_8^{{\rm{PM}}}/\lambda$
      0.50.60.40.5
    • Table 4. The adjustment of SM in compensating PM figure error

      View table
      View in Article

      Table 4. The adjustment of SM in compensating PM figure error

      $XD{E_{{\rm{SM}}} }/{\rm{mm}}$$YD{E_{{\rm{SM}}} }/{\rm{mm}}$$AD{E_{ {\rm{SM} } } }/ (^\circ)$$BD{E_{ {\rm{SM} } } }/ (^\circ)$
      −0.0584−0.061−0.00740.0077
    • Table 5. RMS value of system before and after compensation of surface figure error

      View table
      View in Article

      Table 5. RMS value of system before and after compensation of surface figure error

      RMS/λF1 F2 F3 F4 F5
      Before compensation0.18640.17720.16240.16820.1649
      After compensation0.08510.07830.08120.06420.0816
    • Table 6. Introduced Zernike coefficients for figure error on TM of the off-axis TMA system

      View table
      View in Article

      Table 6. Introduced Zernike coefficients for figure error on TM of the off-axis TMA system

      $C_5^{{\rm{TM}}}/\lambda$$C_6^{{\rm{TM}}}/\lambda$$C_7^{{\rm{TM}}}/\lambda$$C_8^{{\rm{TM}}}/\lambda$
      0.1−0.080.050.05
    • Table 7. The adjustment of SM in compensating TM figure error of the off-axis TMA system

      View table
      View in Article

      Table 7. The adjustment of SM in compensating TM figure error of the off-axis TMA system

      $XD{E_{{\rm{SM}}} }/{\rm{mm} }$$YD{E_{{\rm{SM}}} }/{\rm{mm} }$$AD{E_{ {\rm{SM} } } }/(^\circ)$$BD{E_{ {\rm{SM} } } }/ (^\circ)$
      −0.083−0.0460.035−0.067
    • Table 8. RMS value of system before and after compensation of surface figure error

      View table
      View in Article

      Table 8. RMS value of system before and after compensation of surface figure error

      RMS/λF1 F2 F3 F4 F5
      Before compensation0.31750.35610.27490.23440.2795
      After compensation0.10920.10410.09400.13880.1038
    • Table 9. The range of x/y astigmatism and x/y coma coefficient of TM figure error

      View table
      View in Article

      Table 9. The range of x/y astigmatism and x/y coma coefficient of TM figure error

      $C_5^{{\rm{TM}}}/\lambda$$C_6^{{\rm{TM}}}/\lambda$$C_7^{{\rm{TM}}}/\lambda$$C_8^{{\rm{TM}}}/\lambda$
      ±0.03±0.03±0.03±0.03
    Tools

    Get Citation

    Copy Citation Text

    Mingze Ma, Xu He, Jinxin Wang, Jing Luo, Tianxiao Xu, Cui Lin, Haoran Zhou. Compensation mechanism of primary mirror and the third mirror figure error of off-axis three-mirror telescope[J]. Infrared and Laser Engineering, 2023, 52(4): 20230053

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical design

    Received: Feb. 7, 2023

    Accepted: --

    Published Online: Jul. 4, 2023

    The Author Email:

    DOI:10.3788/IRLA20230053

    Topics