Acta Physica Sinica, Volume. 68, Issue 2, 027101-1(2019)
Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon
Fig. 1. Schematic diagram of doped ZGNR which consists of left, right leads and central region. The relative angle between two lead magnetizations is defined by
. The length of central region is defined by
Fig. 2. (a)−(f) Magnetization distribution; (g) transmission; (h) band structure of undoped ZGNR (red and black lines in (h) denote up-spin and down-spin).(a)—(f) 不同角度下的未掺杂石墨烯纳米带的磁化分布; (g) 透射系数; (h) 能带结构(红色与黑色分别代表自旋向上和自旋向下)
Fig. 3. Magnetization distribution of N-doped ZGNR.氮原子掺杂的石墨烯纳米带在不同角度下的磁化分布
Fig. 4. Projected density of states: (a) Undoped; (b) B-doped; (c) N-doped ZGNR. C1 denotes the leftmost carbon atom on the upper edge. C8 denotes the left nearest neighboring carbon atom of the dopant. B/N is boron/nitrogen atom. C9 denotes the central carbon atom in the upper edge of undoped ZGNR.石墨烯纳米带投影到几个原子上的电子态密度 (a) 未掺杂; (b) 硼掺杂; (c) 氮掺杂. C1代表中心区上边缘的最左边的碳原子, C8代表掺杂原子左侧的最近邻碳原子, B/N代表掺杂原子, C9代表未掺杂时上边缘最中心的碳原子
Fig. 5. Magnetization distribution of B-doped ZGNR.硼原子掺杂的石墨烯纳米带在不同角度下的磁化分布
Fig. 6. (a) Size and (b) direction of magnetic moment of atoms in upper edge of ZGNR as function of atom position at °. °时未掺杂与硼/氮掺杂的石墨烯纳米带的上边缘碳原子的(a)磁矩大小和(b)方向与碳原子位置之间的关系
Fig. 7. Transmission (top panel) and projected density of states (bottom panel) of doped ZGNRs as function of energy: (a), (b) N-doping; (c), (d) B-doping.掺杂石墨烯纳米带的透射系数和投影态密度与能量之间的关系 (a), (b)为氮掺杂; (c), (d)为硼掺杂
Get Citation
Copy Citation Text
Jin-Tao Liang, Xiao-Hong Yan, Ying Zhang, Yang Xiao. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon[J]. Acta Physica Sinica, 2019, 68(2): 027101-1
Category: Research Articles
Received: Sep. 23, 2018
Accepted: --
Published Online: Sep. 29, 2019
The Author Email: