Journal of the Chinese Ceramic Society, Volume. 52, Issue 1, 109(2024)
Tunable Energy Band of Indium Tin Sulfide (InxSn5-xS8) and Visible-Light-Driven Photocatalytic H2O2 Generation
[1] [1] TENG Z Y, ZHANG Q T, YANG H B, et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide[J]. Nat Catal, 2021, 4(5): 374-384.
[3] [3] AYARE P J, WATSON N, HELTON M R, et al. Molecular Z-scheme for solar fuel production via dual photocatalytic cycles[J]. J Am Chem Soc, 2022, 144(47): 21568-21575.
[4] [4] LI Y F, WANG S, CHANG W, et al. Co-monomer engineering optimized electron delocalization system in carbon-bridging modified g-C3N4 nanosheets with efficient visible-light photocatalytic performance[J]. Appl Catal B Environ, 2020, 274: 119116.
[5] [5] SUN X, CHEN X Y, FU C, et al. Molecular oxygen enhances H2O2 utilization for the photocatalytic conversion of methane to liquid-phase oxygenates[J]. Nat Commun, 2022, 13(1): 6677.
[6] [6] KONDO Y, KUWAHARA Y, MORI K, et al. Design of metal-organic framework catalysts for photocatalytic hydrogen peroxide production[J]. Chem, 2022, 8(11): 2924-2938.
[7] [7] ZHANG Y N, PAN C S, BIAN G M, et al. H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst[J]. Nat Energy, 2023, 8(4): 361-371.
[8] [8] ZHOU L, LEI J Y, WANG F C, et al. Carbon nitride nanotubes with in situ grafted hydroxyl groups for highly efficient spontaneous H2O2 production[J]. Appl Catal B Environ, 2021, 288: 119993.
[9] [9] DU R F, XIAO K, LI B Y, et al. Controlled oxygen doping in highly dispersed Ni-loaded g-C3N4 nanotubes for efficient photocatalytic H2O2 production[J]. Chem Eng J, 2022, 441: 135999.
[10] [10] ZHAO Y B, ZHANG P, YANG Z C, et al. Mechanistic analysis of multiple processes controlling solar-driven H2O2 synthesis using engineered polymeric carbon nitride[J]. Nat Commun, 2021, 12(1): 3701.
[11] [11] HE Q, VIENGKEO B, ZHAO X, et al. Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production[J]. Nano Res, 2023, 16(4): 4524-4530.
[12] [12] CHENG L, YUE X Y, WANG L X, et al. Dual-single-atom tailoring with bifunctional integration for high-performance CO2 photoreduction[J]. Adv Mater, 2021, 33(49): 2105135.
[13] [13] CAO S W, SHEN B J, TONG T, et al. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction[J]. Adv Funct Mater, 2018, 28(21): 1800136.
[14] [14] LEI W Y, ZHOU T, PANG X, et al. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects[J]. J Mater Sci Technol, 2022, 114: 143-164.
[15] [15] PANG X, XUE S X, ZHOU T, et al. 2D/2D nanohybrid of Ti3C2 MXene/WO3 photocatalytic membranes for efficient water purification[J]. Ceram Int, 2022, 48(3): 3659-3668.
[17] [17] ZHU H G, XUE Q, ZHU G Y, et al. Decorating Pt@cyclodextrin nanoclusters on C3N4/MXene for boosting the photocatalytic H2O2 production[J]. J Mater Chem A, 2021, 9(11): 6872-6880.
[18] [18] YUAN G S, TAN L C, WANG P, et al. MOF-COF composite photocatalysts: design, synthesis, and mechanism[J]. Cryst Growth Des, 2022, 22(1): 893-908.
[19] [19] LIU S Q, QI W L, ADIMI S, et al. Titanium nitride-supported platinum with metal-support interaction for boosting photocatalytic H2 evolution of indium sulfide[J]. ACS Appl Mater Interfaces, 2021, 13(6): 7238-7247.
[20] [20] WU S A, YU H T, CHEN S, et al. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering[J]. ACS Catal, 2020, 10(24): 14380-14389.
[21] [21] SONI V, RAIZADA P, KUMAR A, et al. Indium sulfide-based photocatalysts for hydrogen production and water cleaning: A review[J]. Environ Chem Lett, 2021, 19(2): 1065-1095.
[22] [22] LI Y X, HAN P, HOU Y L, et al. Oriented ZnmIn2Sm+3@In2S3 heterojunction with hierarchical structure for efficient photocatalytic hydrogen evolution[J]. Appl Catal B Environ, 2019, 244: 604-611.
[24] [24] MUKHERJEE B, ISOTTA E, FANCIULLI C, et al. Topological Anderson insulator in cation-disordered Cu2ZnSnS4[J]. Nanomaterials, 2021, 11(10): 2595.
[25] [25] WANG J J, LIN S, TIAN N, et al. Nanostructured metal sulfides: classification, modification strategy, and solar-driven CO2 reduction application[J]. Adv Funct Mater, 2021, 31(9): 2008008.
[27] [27] PANG X, XUE S X, ZHOU T, et al. Noble metal-free heterojunction of ultrathin Ti3C2 MXene/WO3 for boosted visible-light-driven photoreactivity[J]. Adv Sustain Syst, 2023, 7(1): 2100507.
[28] [28] WANG L X, ZHANG J J, ZHANG Y, et al. Inorganic metal-oxide photocatalyst for H2O2 production[J]. Small, 2022, 18(8): 2104561.
[29] [29] WANG L X, ZHANG J J, YU H G, et al. Dynamics of photogenerated charge carriers in inorganic/organic S-scheme heterojunctions[J]. J Phys Chem Lett, 2022, 13(21): 4695-4700.
[30] [30] CHEN X, ZHANG W W, ZHANG L X, et al. Construction of porous tubular In2S3@In2O3 with plasma treatment-derived oxygen vacancies for efficient photocatalytic H2O2 production in pure water via two-electron reduction[J]. ACS Appl Mater Interfaces, 2021, 13(22): 25868-25878.
[31] [31] LIU E Z, CHEN J B, MA Y N, et al. Fabrication of 2D SnS2/g-C3N4 heterojunction with enhanced H2 evolution during photocatalytic water splitting[J]. J Colloid Interface Sci, 2018, 524: 313-324.
[32] [32] GAO M, SHEN Z T, YUE G T, et al. One-pot hydrothermal in situ growth of In4SnS8@MoS2@CNTs as efficient Pt-free counter electrodes for dye-sensitized solar cells[J]. J Alloys Compd, 2023, 932: 167643.
[33] [33] MA X H, REN C J, LI H D, et al. A novel noble-metal-free Mo2C-In2S3 heterojunction photocatalyst with efficient charge separation for enhanced photocatalytic H2 evolution under visible light[J]. J Colloid Interface Sci, 2021, 582(Pt B): 488-495.
[34] [34] SHANG D D, LI D, CHEN B Y, et al. 2D-2D SnS2/covalent organic framework heterojunction photocatalysts for highly enhanced solar-driven hydrogen evolution without cocatalysts[J]. ACS Sustain Chem Eng, 2021, 9(42): 14238-14248.
[35] [35] CHAI Y, CHEN Y M, SHEN J N, et al. Distortion of the coordination structure and high symmetry of the crystal structure in In4SnS8 microflowers for enhancing visible-light photocatalytic CO2 reduction[J]. ACS Catal, 2021, 11(17): 11029-11039.
[36] [36] ZHANG S L, HONG J A, ZENG X H, et al. Constructing layered nanostructures from non-layered sulfide crystals via surface charge manipulation strategy[J]. Adv Funct Mater, 2021, 31(32): 2101676.
[37] [37] LIU M L, LI P, WANG S J, et al. Hierarchically porous hydrangea-like In2S3/In2O3 heterostructures for enhanced photocatalytic hydrogen evolution[J]. J Colloid Interface Sci, 2021, 587: 876-882.
[38] [38] RANGAPPA A P, KUMAR D P, GOPANNAGARI M, et al. Highly efficient hydrogen generation in water using 1D CdS nanorods integrated with 2D SnS2 nanosheets under solar light irradiation[J]. Appl Surf Sci, 2020, 508: 144803.
[39] [39] ZHANG Z Z, WANG M Y, CHI Z X, et al. Internal electric field engineering step-scheme-based heterojunction using lead-free Cs3Bi2Br9 perovskite-modified In4SnS8 for selective photocatalytic CO2 reduction to CO[J]. Appl Catal B Environ, 2022, 313: 121426.
[40] [40] YANG Y, CHENG B, YU J G, et al. TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity[J]. Nano Res, 2023, 16(4): 4506-4514.
[41] [41] LEI Y Q, WANG G H, ZHOU L, et al. Cubic spinel In4SnS8: electrical transport properties and electrochemical hydrogen storage properties[J]. Dalton Trans, 2010, 39(30): 7021-7024.
[42] [42] CHU C C, MIAO W, LI Q J, et al. Highly efficient photocatalytic H2O2 production with cyano and SnO2 co-modified g-C3N4[J]. Chem Eng J, 2022, 428: 132531.
[43] [43] LEI W Y, PANG X, GE G L, et al. Recent progress on black phosphorus quantum dots for full-spectrum solar-to-chemical energy conversion[J]. Nano Today, 2021, 39: 101183.
[44] [44] DONG G J, HUANG X J, BI Y P. Anchoring black phosphorus quantum dots on Fe-doped W18O49 nanowires for efficient photocatalytic nitrogen fixation[J]. Angew Chem Int Ed Engl, 2022, 61(30): e202204271.
[45] [45] WU C J, LI X Y, LI T R, et al. Natural sunlight photocatalytic synthesis of benzoxazole-bridged covalent organic framework for photocatalysis[J]. J Am Chem Soc, 2022, 144(41): 18750-18755.
[46] [46] YANG C, WAN S, ZHU B, et al. Calcination‐regulated microstructures of donor‐acceptor polymers towards enhanced and stable photocatalytic H2O2 production in pure water[J]. Angew Chem Int Ed, 2022, 61(39): e202208438.
[47] [47] ZHANG Z J, TSUCHIMOCHI T, INA T, et al. Binary dopant segregation enables hematite-based heterostructures for highly efficient solar H2O2 synthesis[J]. Nat Commun, 2022, 13(1): 1499.
[48] [48] YANG J, ACHARJYA A, YE M Y, et al. Protonated imine-linked covalent organic frameworks for photocatalytic hydrogen evolution[J]. Angew Chem Int Ed Engl, 2021, 60(36): 19797-19803.
[49] [49] HU Y, YU X H, LIU Q Q, et al. Highly metallic Co-doped MoS2 nanosheets as an efficient cocatalyst to boost photoredox dual reaction for H2 production and benzyl alcohol oxidation[J]. Carbon, 2022, 188: 70-80.
[50] [50] TANG Y A, JIA X F, GUO Y C, et al. Surface unsaturated sulfur modulates Pt sub-nanoparticles on tandem homojunction CdS for efficient electron extraction[J]. Adv Energy Mater, 2023, 13(14): 2203827.
[51] [51] LI W, MA T H, DANG Y Y, et al. Ultrafine MoS2/Sb2S3 nanorod type-II heterojunction for hydrogen production under simulated sunlight[J]. Adv Mater Inter, 2022, 9(15): 2200119.
Get Citation
Copy Citation Text
ZHOU Tong, ZHAO Liang, XUE Shixiang, WU Pan, YANG Xinxin, TAN Ziqiang, LEI Wanying. Tunable Energy Band of Indium Tin Sulfide (InxSn5-xS8) and Visible-Light-Driven Photocatalytic H2O2 Generation[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 109
Received: Jun. 8, 2023
Accepted: --
Published Online: Jul. 30, 2024
The Author Email: Wanying LEI (leiwy@xauat.edu.cn)
CSTR:32186.14.