Optics and Precision Engineering, Volume. 32, Issue 14, 2211(2024)
Effect of tool wear and variable friction coefficient on cutting force
[1] [1] 王之岳, 陈灶灶, 朱利民, 等. 微透镜阵列单点金刚石车削补偿技术[J]. 光学 精密工程, 2022, 30(7): 813-820. doi: 10.37188/OPE.20223007.0813WANGZ Y, CHENZ Z, ZHUL M, et al. Single point diamond turning and compensation for micro-lens array[J]. Opt. Precision Eng., 2022, 30(7): 813-820.(in Chinese). doi: 10.37188/OPE.20223007.0813
[2] [2] 余俊, 王占山, 黄秋实, 等. 极紫外及X射线波段超光滑反射镜的超精密加工与检测[J]. 光学 精密工程, 2022, 30(21): 2688-2697. doi: 10.37188/ope.20223021.2688YUJ, WANGZ S, HUANGQ S, et al. Ultra-precision machining and testing of reflector mirrors for extreme ultraviolet and X-ray[J]. Optics and Precision Engineering, 2022, 30(21): 2688-2697.(in Chinese). doi: 10.37188/ope.20223021.2688
[3] M E MERCHANT. Mechanics of the metal cutting process. I. orthogonal cutting and a type 2 chip. Journal of Applied Physics, 16, 267-275(1945).
[4] M ABEBE, F C APPl. A slip-line solution for negative rake angle cutting. Manufacturing Engineering Transactions, 9, 341-348(1981).
[5] T SHI, S RAMALINGAM. Slip-line solution for orthogonal cutting with a chip breaker and flank wear. International Journal of Mechanical Sciences, 33, 689-704(1991).
[6] H KUDO. Some new slip-line solutions for two-dimensional steady-state machining. International Journal of Mechanical Sciences, 7, 43-55(1965).
[7] X L JIN, Y ALTINTAS. Slip-line field model of micro-cutting process with round tool edge effect. Journal of Materials Processing Technology, 211, 339-355(2011).
[8] L REBAIOLI, G BIELLA, M ANNONI et al. Applicability of an orthogonal cutting slip-line field model for the microscale. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229, 2250-2264(2015).
[9] D J WALDORF, R E DEVOR, S G KAPOOR. A slip-line field for ploughing during orthogonal cutting. Journal of Manufacturing Science and Engineering, 120, 693-699(1998).
[10] P J ARRAZOLA, D UGARTE, X DOMÍNGUEZ. A new approach for the friction identification during machining through the use of finite element modeling. International Journal of Machine Tools and Manufacture, 48, 173-183(2008).
[11] S MANE, S S JOSHI, S KARAGADDE et al. Modeling of variable friction and heat partition ratio at the chip-tool interface during orthogonal cutting of Ti-6Al-4V. Journal of Manufacturing Processes, 55, 254-267(2020).
[12] T ÖZEL. The influence of friction models on finite element simulations of machining. International Journal of Machine Tools and Manufacture, 46, 518-530(2006).
[13] [13] 李晓晨, 岳彩旭, 刘献礼, 等. 考虑刀-屑变摩擦因数的铣削力预测[J]. 振动.测试与诊断, 2022, 42(3): 580-587, 622, 623.LIX C, YUEC X, LIUX L, et al. Prediction modeling of milling force based on variable friction coefficient between tool and chip[J]. Journal of Vibration, Measurement & Diagnosis, 2022, 42(3): 580-587, 622, 623.(in Chinese)
[14] [14] 张程焱, 张发平, 杨瑞生, 等. 基于局部摩擦因数模型的切削力预测建模[J]. 北京理工大学学报, 2018, 38(1): 6-11, 19.ZHANGC Y, ZHANGF P, YANGR S, et al. Predictive modeling of cutting force based on local friction coefficient model[J]. Transactions of Beijing Institute of Technology, 2018, 38(1): 6-11, 19.(in Chinese)
[15] [15] 谭云成, 杨建东, 夏仁丰. 考虑刀具磨损时的理论切削力[J]. 长春光学精密机械学院学报, 1995(2): 41-45.TANY C, YANGJ D, XIAR F. Theoretical cutting forces when tool wear is considered[J]. Journal of Changchun Institute of Optics and Fine Mechanics, 1995(2): 41-45.(in Chinese)
[16] [16] 景岗. 一定切削用量和刀具磨损范围内的切削力数学模型及试验验证[J]. 云南工业大学学报, 1989(1): 48-60.JINGG. Math models of cutting forces within the range of certain utting conditions and tool wear and experimental verification of these models[J]. Journal of Yunnan Polytechnic University, 1989(1): 48-60.(in Chinese)
[17] [17] 张宝金, 宋书善, 陈明. 基于刀具状态的切削力模型研究[J]. 工具技术, 2010, 44(2): 27-30.ZHANGB J, SONGS S, CHENM. Study of cutting force model based on tool condition[J]. Tool Engineering, 2010, 44(2): 27-30.(in Chinese)
[18] Y HUANG, S Y LIANG. Modeling of cutting forces under hard turning conditions considering tool wear effect. Journal of Manufacturing Science and Engineering, 127, 262-270(2005).
[19] D W SMITHEY, S G KAPOOR, R E DEVOR. A new mechanistic model for predicting worn tool cutting forces. Machining Science and Technology, 5, 23-42(2001).
[20] D W SMITHEY, S G KAPOOR, R E DEVOR. A worn tool force model for three-dimensional cutting operations. International Journal of Machine Tools and Manufacture, 40, 1929-1950(2000).
[21] K M LI, S Y LIANG. Modeling of cutting forces in near dry machining under tool wear effect. International Journal of Machine Tools and Manufacture, 47, 1292-1301(2007).
[22] L WU, K J SHA, Y TAO et al. A hybrid deep learning model as the digital twin of ultra-precision diamond cutting for In-process prediction of cutting-tool wear. Applied Sciences, 13, 6675(2023).
[23] P HUANG, W B LEE. Cutting force prediction for ultra-precision diamond turning by considering the effect of tool edge radius. International Journal of Machine Tools and Manufacture, 109, 1-7(2016).
[24] S ZHANG, W J ZONG. FE-SPH hybrid method to simulate the effect of tool inclination angle in oblique diamond cutting of KDP crystal. International Journal of Mechanical Sciences, 196, 106271(2021).
[25] A PRAMANIK, L C ZHANG, J A ARSECULARATNE. Prediction of cutting forces in machining of metal matrix composites. International Journal of Machine Tools and Manufacture, 46, 1795-1803(2006).
[26] Z F WANG, J J ZHANG, Z W XU et al. Crystal anisotropy-dependent shear angle variation in orthogonal cutting of single crystalline copper. Precision Engineering, 63, 41-48(2020).
[27] Z W ZHU, W L ZHU et al. Cutting forces in fast-/ slow tool servo diamond turning of micro-structured surfaces. International Journal of Machine Tools and Manufacture, 136, 62-75(2019).
[28] Z W SUN, S J WANG. An analytical force model for ultra-precision diamond sculpturing of micro-grooves with textured surfaces. International Journal of Mechanical Sciences, 160, 129-139(2019).
[29] СИЛИН С С. Методподобияприрезанииматериалов(1979).
[30] S M SON, H S LIM, J H AHN. Effects of the friction coefficient on the minimum cutting thickness in micro cutting. International Journal of Machine Tools and Manufacture, 45, 529-535(2005).
[31] [31] 雷大江, 岳晓斌, 崔海龙, 等. 切点约束和探针针尖半径补偿的金刚石刀具刃口钝圆半径求解方法[J]. 光学 精密工程, 2017, 25(7): 1807-1814.LEID J, YUEX B, CUIH L, et al. Calculating method for circle radius of diamond tool edge based on tangent point constrain and probe tip radius compensation[J]. Opt. Precision Eng., 2017, 25(7): 1807-1814.(in Chinese)
[32] C F WYEN, W KNAPP, K WEGENER. A new method for the characterisation of rounded cutting edges. The International Journal of Advanced Manufacturing Technology, 59, 899-914(2012).
[33] M AKBARI, W KNAPP, K WEGENER. Comparison of transparent objects metrology through diamond cutting edge radii measurements. CIRP Journal of Manufacturing Science and Technology, 13, 72-84(2016).
[34] N Z YUSSEFIAN, P KOSHY. Parametric characterization of the geometry of honed cutting edges. Precision Engineering, 37, 746-752(2013).
[35] Z J YUAN, M ZHOU, S DONG. Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. Journal of Materials Processing Technology, 62, 327-330(1996).
[36] M A RAHMAN, M RAHMAN, A S KUMAR. Chip perforation and ‘burnishing–like’ finishing of Al alloy in precision machining. Precision Engineering, 50, 393-409(2017).
[37] Z C NIU, F F JIAO, K CHENG. An innovative investigation on chip formation mechanisms in micro-milling using natural diamond and tungsten carbide tools. Journal of Manufacturing Processes, 31, 382-394(2018).
[38] X WU, L LIU, M Y DU et al. Experimental study on the minimum undeformed chip thickness based on effective rake angle in micro milling. Micromachines, 11, 924(2020).
[39] W GRZESIK, B DENKENA, K ŻAK et al. Correlation between friction and wear of cubic borone nitride cutting tools in precision hard machining. Journal of Manufacturing Science and Engineering, 138(2016).
[40] S VENKATACHALAM, S Y LIANG. Effects of ploughing forces and friction coefficient in microscale machining. Journal of Manufacturing Science and Engineering, 129, 274-280(2007).
[41] [41] 宗文俊, 王洪祥, 李旦, 等. 基于有限元法分析超精密切削中的摩擦问题[J]. 制造技术与机床, 2004(8): 88-91.ZONGW J, WANGH X, LID, et al. Analysis on the friction in ultra- precision turning based on finite element method[J]. Manufacturing Technology & Machine Tool, 2004(8): 88-91.(in Chinese)
[42] M H DU, Z CHENG, S S WANG. Finite element modeling of friction at the tool-chip-workpiece interface in high speed machining of Ti6Al4V. International Journal of Mechanical Sciences, 163, 105100(2019).
[43] B DENKENA, J C BECKER, L DE LEÓN-GARCÍA. Study of the influence of the cutting edge microgeometry on the cutting forces and wear behavior in turning operations, 503-508(2005).
[44] C F WYEN, K WEGENER. Influence of cutting edge radius on cutting forces in machining titanium. CIRP Annals, 59, 93-96(2010).
[45] P LI, Z Y CHANG. Numerical modeling of the effect of cutting-edge radius on cutting force and stress concentration during machining. Micromachines, 13, 211(2022).
[46] Ł ŻYŁKA, R FLEJSZAR, P LAJMERT. Influence of cutting-edge microgeometry on cutting forces in high-speed milling of 7075 aluminum alloy. Materials, 16, 3859(2023).
Get Citation
Copy Citation Text
Jicai KUAI, Yunqian DUAN, Xin LI, Shian LIU, Dmitrii Valerievich ARDASHEV. Effect of tool wear and variable friction coefficient on cutting force[J]. Optics and Precision Engineering, 2024, 32(14): 2211
Category:
Received: Mar. 10, 2024
Accepted: --
Published Online: Sep. 27, 2024
The Author Email: KUAI Jicai (hitgjc@163.com)