Optoelectronics Letters, Volume. 18, Issue 1, 54(2022)

Motion artifact correction for MR images based on convolutional neural network

Bin ZHAO1...2, Zhiyang LIU1,2, Shuxue DING1,2,3, Guohua LIU1,2, Chen CAO4, and Hong WU12,* |Show fewer author(s)
Author Affiliations
  • 1College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
  • 2Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin 300350, China
  • 3School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 541004, China
  • 4Department of Medical Imaging, Tianjin Huanhu Hospital, Tianjin 300350, China
  • show less
    References(16)

    [1] [1] ANDRE J B, BRESNAHAN B W, BASHA M M, et al. Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations[J]. Journal of the American college of radiology, 2015, 12(7):689-695.

    [2] [2] GODENSCHWWGWR F, KAGEBEIN U, STUCHT D, et al. Motion correction in MRI of the brain[J]. Physics in medicine & biology, 2016, 61(5):R32-R56.

    [3] [3] VAN DER KOUWE A J W, BENNER T, DALE A M. Real-time rigid body motion correction and shimming using cloverleaf navigators[J]. Magnetic resonance in medicine:an official journal of the international society for magnetic resonance in medicine, 2006, 56(5): 1019-1032.

    [4] [4] WELCH E B, MANDUCA A, GRIMM R C, et al. Spherical navigator echoes for full 3D rigid body motion measurement in MRI[J]. Magnetic resonance in medicine:an official journal of the international society for magnetic resonance in medicine, 2002, 47(1):32-41.

    [5] [5] LYU Q, SHAN H, XIE Y, et al. Cine cardiac MRI motion artifact reduction using a recurrent neural network[EB/OL]. (2020-06-23)[2021-09-20]. https://arxiv.org/abs/2006.12700v1.

    [6] [6] TAMADA D, KROMREY M L, ICHIKAWA S, et al. Motion artifact reduction using a convolutional neural network for dynamic contrast enhanced MR imaging of the liver[J]. Magnetic resonance in medical sciences, 2020, 19(1):64-76.

    [7] [7] ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian denoiser:residual learning of deep CNN for image denoising[J]. IEEE transactions on image processing, 2017, 26(7):3142-3155.

    [8] [8] PAWAR K, CHEN Z, SHAH N J, et al. MoCoNet: motion correction in 3D MPRAGE images using a convolutional neural network approach[EB/OL]. (2018-07-29) [2021-09-20]. https://arxiv.org/abs/1807.10831v1.

    [9] [9] LIU J, KOCAK M, SUPANICH M, et al. Motion artifacts reduction in brain MRI by means of a deep residual network with densely connected multi-resolution blocks (DRN-DCMB)[J]. Magnetic resonance imaging, 2020, 71:69-79.

    [10] [10] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), October 5-9, 2015, Munich, Germany. Berlin, Heidelberg:Springer-Verlag, 2015:234-241.

    [11] [11] WOO S, PARK J, LEE J Y, et al. CBAM : convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), September 8-14, 2018, Munich, Germany. Berlin, Heidelberg:Springer-Verlag, 2018:3-19.

    [12] [12] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York:IEEE, 2016:770-778.

    [13] [13] HE K, ZHANG X, REN S, et al. Delving deep into rectifiers : surpassing human-level performance on imagenet classification[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York:IEEE, 2015:1026-1034.

    [14] [14] KINGMA D P, BA J. Adam:a method for stochastic optimization[EB/OL]. (2017-06-30)[2021-09-20]. https://arxiv.org/pdf/1412.6980.pdf.

    [15] [15] ZHAO H, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE transactions on computational imaging, 2016, 3(1):47-57.

    [16] [16] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York:IEEE, 2015:3431-3440.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Bin, LIU Zhiyang, DING Shuxue, LIU Guohua, CAO Chen, WU Hong. Motion artifact correction for MR images based on convolutional neural network[J]. Optoelectronics Letters, 2022, 18(1): 54

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 21, 2021

    Accepted: Sep. 29, 2021

    Published Online: Jan. 20, 2023

    The Author Email: Hong WU (wuhong@nankai.edu.cn)

    DOI:10.1007/s11801-022-1084-z

    Topics