Acta Photonica Sinica, Volume. 53, Issue 8, 0810001(2024)
A Multi-scale Hierarchical Residual Network-based Method for Tiny Object Detection in Optical Remote Sensing Images
[1] G S XIA, X BAI, J DING et al. DOTA: a large-scale dataset for object detection in aerial images, 3974-3983(2018).
[2] W HAN, J CHEN, L Z WANG et al. Methods for small, weak object detection in optical high-resolution remote sensing images: a survey of advances and challenges. IEEE Geoscience and Remote Sensing Magazine, 9, 8-34(2021).
[3] G CHENG, X YUAN, X W YAO et al. Towards large-scale small object detection: survey and benchmarks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 13467-13488(2023).
[4] Andong LI, Zaiping LIN, Wei AN et al. Infrared small target detection in compressive domain based on self-adaptive parameter configuration. Chinese Journal of Lasers, 42, 1008003(2015).
[5] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).
[6] Xiuzai ZHANG, Tao SHEN, Dai XU. Remote-sensing image object detection based on improved YOLOv8 algorithm. Laser & Optoelectronics Progress, 61, 1028001(2024).
[7] J Q ZHANG, J LEI, W Y XIE et al. SuperYOLO: super resolution assisted object detection in multimodal remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-15(2023).
[8] X L FANG, F HU, M YANG et al. Small object detection in remote sensing images based on super-resolution. Pattern Recognition Letters, 153, 107-112(2022).
[10] C R CHEN, Y ZHANG, Q X LV et al. RRNet: a hybrid detector for object detection in drone-captured images, 100-108(2019).
[11] J X WU, Z X PAN, B LEI et al. FSANet: feature-and-spatial-aligned network for tiny object detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-17(2022).
[12] Nan LIU, Zhaoyong MAO, Yichen WANG et al. Remote sensing images target detection based on adjustable parameter and receptive field. Acta Photonica Sinica, 50, 1128001(2021).
[13] Junda XUE, Jiajia ZHU, Jing ZHANG et al. Object detection in optical remote sensing images based on FFC-SSD model. Acta Optica Sinica, 42, 1210002(2022).
[14] Youwei WANG, Ying GUO, Xiangying SHAO. Target detection in remote sensing images based on improved cascade algorithm. Acta Optica Sinica, 42, 2428004(2022).
[15] Hongjian FU, Hongyang BAI, Hongwei GUO et al. Object detection method of optical remote sensing image with multi-attention mechanism. Acta Photonica Sinica, 51, 1210003(2022).
[16] Zhaohua HU, Yuhui LI. Object detection algorithm in remote sensing images based on improved YOLOX. Laser & Optoelectronics Progress, 61, 1228004(2024).
[18] R H FU, C C CHEN, S YAN et al. Gaussian similarity-based adaptive dynamic label assignment for tiny object detection. Neurocomputing, 543, 126285(2023).
[20] X H YU, Y Q GONG, N JIANG et al. Scale match for tiny person detection, 1246-1254(2020).
[21] C Y WANG, H Y M LIAO, Y H WU et al. Cspnet: a new backbone that can enhance learning capability of cnn, 1571-1580(2020).
[22] C Y WANG, A BOCHKOVSKIY, H Y M LIAO. Scaled-YOLOv4: scaling cross stage partial network, 13024-13033(2021).
[23] C Y WANG, A BOCHKOVSKIY, H Y M LIAO. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, 7464-7475(2023).
[24] S H GAO, M M CHENG, K ZHAO et al. Res2Net: a new multi-scale backbone architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 652-662(2021).
[28] Z LIU, Y T LIN, Y CAO et al. Swin transformer: hierarchical vision transformer using shifted windows, 9992-10002(2021).
[30] Z W CAI, N VASCONCELOS. Cascade R-CNN: delving into high quality object detection, 6154-6162(2018).
[31] S Q REN, K M HE, R GIRSHICK et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[32] P Z SUN, R F ZHANG, Y JIANG et al. Sparse R-CNN: end-to-end object detection with learnable proposals, 14449-14458(2018).
[33] S Y QIAO, L C CHEN, A YUILLE. DetectoRS: detecting objects with recursive feature pyramid and switchable atrous convolution, 10208-10219(2021).
[34] K M HE, G GKIOXARI, P DOLLAR et al. Mask R-CNN, 2980-2988(2017).
Get Citation
Copy Citation Text
Xiangjin ZENG, Genghuan LIU, Jianming CHEN, Jiazhen DOU, Zhenbo REN, Jianglei DI, Yuwen QIN. A Multi-scale Hierarchical Residual Network-based Method for Tiny Object Detection in Optical Remote Sensing Images[J]. Acta Photonica Sinica, 2024, 53(8): 0810001
Category:
Received: Jan. 11, 2024
Accepted: Mar. 5, 2024
Published Online: Oct. 15, 2024
The Author Email: DI Jianglei (jiangleidi@gdut.edu.cn), QIN Yuwen (qinyw@gdut.edu.cn)