International Journal of Extreme Manufacturing, Volume. 6, Issue 2, 22008(2024)
Recent advances in fabrication and functions of neuromorphic system based on organic field effect transistor
[1] [1] Shi Q F, Dong B W, He T Y Y, Sun Z D, Zhu J X, Zhang Z X and Lee C 2020 Progress in wearable electronics/photonics-Moving toward the era of artificial intelligence and internet of things Infomat 2 1131–62
[2] [2] Chang W-J, Chen L-B and Su K-Y 2019 DeepCrash: a deep learning-based internet of vehicles system for head-on and single-vehicle accident detection with emergency notification IEEE Access 7 148163–75
[3] [3] Zhu Y X, Mao H W, Zhu Y, Wang X J, Fu C Y, Ke S,Wan C J and Wan Q 2023 CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review Int. J. Extreme Manuf. 5 042010
[4] [4] Merolla P A et al 2014 A million spiking-neuron integrated circuit with a scalable communication network and interface Science 345 668–73
[5] [5] Kandel E R 2003 The molecular biology of memory storage:a dialogue between genes and synapses Med. Sci.19 625–33
[6] [6] Dahiya R S, Metta G, Valle M and Sandini G 2010 Tactile sensing-from humans to humanoids IEEE Trans. Robot.26 1–20
[7] [7] Fernandes A M and Albuquerque P B 2012 Tactual perception: a review of experimental variables and procedures Cogn. Process. 13 285–301
[8] [8] Curtis C E and D’Esposito M 2003 Persistent activity in the prefrontal cortex during working memory Trends Cogn.Sci. 7 415–23
[9] [9] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nanoscale memristor device as synapse in neuromorphic systems Nano Lett. 10 1297–301
[10] [10] Zidan M A, Strachan J P and Lu W D 2018 The future of electronics based on memristive systems Nat. Electron.1 22–29
[11] [11] He Y L, Yang Y, Nie S, Liu R and Wan Q 2018 Electric-double-layer transistors for synaptic devices and neuromorphic systems J. Mater. Chem. C 6 5336–52
[12] [12] Huang H Y, Ge C, Liu Z H, Zhong H, Guo E J, He M,Wang C, Yang G Z and Jin K J 2021 Electrolyte-gated transistors for neuromorphic applications J. Semicond.42 013103
[13] [13] Nishitani Y, Kaneko Y, Ueda M, Morie T and Fujii E 2012 Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networksJ. Appl. Phys. 111 124108
[14] [14] Jiang J, Guo J, Wan X, Yang Y, Xie H, Niu D, Yang J, He J, Gao Y and Wan Q 2017 2D MoS2 neuromorphic devices for brain-like computational systems Small 13 1700933
[15] [15] Qian C, Sun J, Kong L-A, Gou G Y, Yang J L, He J, Gao Y L and Wan Q 2016 Artificial synapses based on in-plane gate organic electrochemical transistors ACS Appl. Mater.Interfaces 8 26169–75
[16] [16] Lai Q X, Zhang L, Li Z Y, Stickle W F, Williams R S and Chen Y 2010 Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions Adv. Mater. 22 2448–53
[17] [17] Tian H, Guo Q S, Xie Y J, Zhao H, Li C, Cha J J, Xia F N and Wang H 2016 Anisotropic black phosphorus synaptic device for neuromorphic applications Adv. Mater.28 4991–7
[18] [18] Chen Y H, Yu H Y, Gong J D, Ma M X, Han H, Wei H H and Xu W T 2019 Artificial synapses based on nanomaterials Nanotechnology 30 012001
[19] [19] Zhou K et al 2023 Manufacturing of graphene based synaptic devices for optoelectronic applications Int. J. Extreme Manuf. 5 042006
[20] [20] Jiang D L, Li J, Fu W H, Chen Q, Yang Y H, Zhou Y H and Zhang J H 2020 Light-stimulated artificial synapse with memory and learning functions by utilizing an aqueous solution-processed In2O3/AlLiO thin-film transistor ACS Appl. Mater. Interfaces 2 2772–9
[21] [21] Dai S L, Wu X H, Liu D P, Chu Y L, Wang K, Yang B and Huang J 2018 Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors ACS Appl. Mater. Interfaces 10 21472–80
[22] [22] Wu X H, Mao S, Chen J H and Huang J 2018 Strategies for improving the performance of sensors based on organic field-effect transistors Adv. Mater. 30 1705642
[23] [23] Shao L et al 2019 Optoelectronic properties of printed photogating carbon nanotube thin film transistors and their application for light-stimulated neuromorphic devices ACS Appl. Mater. Interfaces 11 12161–9
[24] [24] Zhang H C et al 2023 Recent advances in nanofiber-based flexible transparent electrodes Int. J. Extreme Manuf.5 032005
[25] [25] Wang J X, Chen Y, Kong L-A, Fu Y, Gao Y L and Sun J 2018 Deep-ultraviolet-triggered neuromorphic functions in In-Zn-O phototransistors Appl. Phys. Lett. 113 151101
[26] [26] Jiang J, Hu W N, Xie D D, Yang J L, He J, Gao Y L and Wan Q 2019 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration Nanoscale 11 1360–9
[27] [27] Sun J, Oh S, Choi Y, Seo S, Oh M J, Lee M, Lee W B,Yoo P J, Cho J H and Park J-H 2018 Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure Adv. Funct. Mater. 28 1804397
[28] [28] Chen L, Hu Y Z, Huang H X, Liu C, Wu D and Xia J L 2023 Direct laser patterning of organic semiconductors for high performance OFET-based gas sensors J. Mater. Chem. C11 7088–97
[29] [29] Hu P, He X X and Jiang H 2021 Greater than 10 cm2 V?1 s?1: a breakthrough of organic semiconductors for field-effect transistors InfoMat 3 613–30
[30] [30] Li S-X, An Y, Sun X-C, Zhu H, Xia H and Sun H-B 2022 Highly aligned organic microwire crystal arrays for high-performance polarization-sensitive photodetectors and image sensors Sci. China Mater. 65 3105–14
[31] [31] Zhang L L et al 2021 2D organic single crystals: synthesis,novel physics, high-performance optoelectronic devices and integration Mater. Today 50 442–75
[32] [32] Chen Z, Duan S M, Zhang X T and Hu W P 2021 Patterning organic semiconductor crystals for optoelectronics Appl.Phys. Lett. 119 040501
[33] [33] Kim H-M, Kim D-G, Kim Y-S, Kim M and Park J-S 2023 Atomic layer deposition for nanoscale oxide semiconductor thin film transistors: review and outlook Int. J. Extreme Manuf. 5 012006
[34] [34] Kim Y, Park C H, An J S, Choi S-H and Kim T W 2021 Biocompatible artificial synapses based on a zein active layer obtained from maize for neuromorphic computing Sci. Rep. 11 20633
[35] [35] Sueoka B, Cheong K Y and Zhao F 2022 Study of synaptic properties of honey thin film for neuromorphic systems Mater. Lett. 308 131169
[36] [36] Sueoka B, Hasan Tanim M M, Williams L, Xiao Z G,Seah Y Z, Cheong K Y and Zhao F 2022 A synaptic memristor based on natural organic honey with neural facilitation Org. Electron. 109 106622
[37] [37] Yap P L, Cheong K Y, Lee H L and Zhao F 2022 Effects of drying temperature on preparation of pectin polysaccharide thin film for resistive switching memory J.Mater. Sci., Mater. Electron. 33 19805–26
[38] [38] Luo G, Shi J, Deng W, Chang Z, Lu Z, Zhang Y, Pan R, Jie J,Zhang X and Zhang X 2023 Boosting the performance of organic photodetectors with a solution-processed integration circuit toward ubiquitous health monitoring Adv. Mater. 35 2301020
[39] [39] Molina-Lopez F et al 2019 Inkjet-printed stretchable and low voltage synaptic transistor array Nat. Commun.10 2676
[40] [40] Liang J J, Tong K and Pei Q B 2016 A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors Adv. Mater. 28 5986–96
[41] [41] Chiang Y-C, Hung C-C, Lin Y-C, Chiu Y-C, Isono T, Satoh T and Chen W-C 2020 High-performance nonvolatile organic photonic transistor memory devices using conjugated rod-coil materials as a floating gate Adv. Mater.32 2002638
[42] [42] Liu Y Q, Yang W Y, Yan Y J, Wu X M, Wang X M,Zhou Y L, Hu Y Y, Chen H P and Guo T L 2020 Self-powered high-sensitivity sensory memory actuated by triboelectric sensory receptor for real-time neuromorphic computing Nano Energy 75 104930
[43] [43] Liu Y Q, Li E L, Wang X M, Chen Q Z, Zhou Y L, Hu Y Y,Chen G X, Chen H P and Guo T L 2020 Self-powered artificial auditory pathway for intelligent neuromorphic computing and sound detection Nano Energy 78 105403
[44] [44] Wu X M, Li E L, Liu Y Q, Lin W K, Yu R J, Chen G X,Hu Y Y, Chen H P and Guo T L 2021 Artificial multisensory integration nervous system with haptic and iconic perception behaviors Nano Energy 85 106000
[45] [45] Yu R J, Li E L, Wu X M, Yan Y J, He W X, He L H,Chen J W, Chen H P and Guo T L 2020 Electret-based organic synaptic transistor for neuromorphic computing ACS Appl. Mater. Interfaces 12 15446–55
[46] [46] Chen X, Li E L, Zhang X H, Chen Q Z, Yu R J, Ye Y,Chen H P and Guo T L 2022 Printed organic synaptic transistor array for one-to-many neural response IEEE Electron Device Lett. 43 394–7
[47] [47] Zou Y, Li E L, Yu R J, Gao C S, Yu X P, Zeng B Y, Yang Q,Guo T L and Chen H P 2022 Electret-based vertical organic synaptic transistor with MXene for neural network-based computation IEEE Trans. Electron Devices69 6681–5
[48] [48] Yang H H, Yang Q, He L H, Wu X M, Gao C S, Zhang X H,Shan L T, Chen H P and Guo T L 2022 Flexible multi-level quasi-volatile memory based on organic vertical transistor Nano Res. 15 386–94
[49] [49] Chen T Q, Wang X, Hao D D, Dai S L, Ou Q Q, Zhang J Y and Huang J 2021 Photonic synapses with ultra-low energy consumption based on vertical organic field-effect transistors Adv. Opt. Mater. 9 2002030
[50] [50] Wang X M, Li E L, Liu Y Q, Lan S Q, Yang H H, Yan Y J,Shan L T, Lin Z X, Chen H P and Guo T L 2021 Stretchable vertical organic transistors and their applications in neurologically systems Nano Energy90 106497
[51] [51] Sun J, Fu Y and Wan Q 2018 Organic synaptic devices for neuromorphic systems J. Phys. D: Appl. Phys.51 314004
[52] [52] Gkoupidenis P, Schaefer N, Garlan B and Malliaras G G2015 Neuromorphic functions in PEDOT: PSS organic electrochemical transistors Adv. Mater. 27 7176–80
[53] [53] Gkoupidenis P, Koutsouras D A, Lonjaret T, Fairfield J A and Malliaras G G 2016 Orientation selectivity in a multi-gated organic electrochemical transistor Sci. Rep. 6 27007
[54] [54] Zhong Y-N, Gao X, Xu J-L, Sirringhaus H and Wang S-D 2020 Selective UV-gating organic memtransistors with modulable levels of synaptic plasticity Adv. Electron.Mater. 6 1900955
[55] [55] Lee Y R, Trung T Q, Hwang B-U and Lee N-E 2020 A flexible artificial intrinsic-synaptic tactile sensory organ Nat. Commun. 11 2753
[56] [56] Ren Y, Yang J-Q, Zhou L, Mao J-Y, Zhang S-R, Zhou Y and Han S-T 2018 Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites Adv. Funct. Mater. 28 1805599
[57] [57] Dai S L, Wang Y, Zhang J Y, Zhao Y W, Xiao F P, Liu D P,Wang T R and Huang J 2018 Wood-derived nanopaper dielectrics for organic synaptic transistors ACS Appl.Mater. Interfaces 10 39983–91
[58] [58] Choi Y, Oh S, Qian C, Park J-H and Cho J H 2020 Vertical organic synapse expandable to 3D crossbar array Nat.Commun. 11 4595
[59] [59] Kim J H, Stolte M and Würthner F 2022 Wavelength and polarization sensitive synaptic phototransistor based on organic n-type semiconductor/supramolecular J-aggregate heterostructure ACS Nano 16 19523–32
[60] [60] Xie Z C et al 2022 All-solid-state vertical three-terminal N-type organic synaptic devices for neuromorphic computing Adv. Funct. Mater. 32 2107314
[61] [61] Yan Y J, Yu R J, Gao C S, Sui Y, Deng Y F, Chen H P and Guo T L 2022 High-performance n-type thin-film transistor based on bilayer MXene/semiconductor with enhanced electrons transport Sci. China Mater.65 3087–95
[62] [62] Gao C S, Yang H H, Li E L, Yan Y J, He L H, Chen H P,Lin Z X and Guo T L 2021 Heterostructured vertical organic transistor for high-performance optoelectronic memory and artificial synapse ACS Photonics 8 3094–103
[63] [63] Gao C S, Yu R J, Li E L, Zhang C X, Zou Y, Chen H P,Lin Z X and Guo T L 2022 Adaptive immunomorphic hardware based on organic semiconductors and oxidized MXene heterostructures for feature information recognition Cell Rep. Phys. Sci. 3 100930
[64] [64] Lan S Q, Ke Y D and Chen H P 2021 Photonic synaptic transistor based on P-type organic semiconductor blending with N-type organic semiconductor IEEE Electron Device Lett. 42 1180–3
[65] [65] Liang K et al 2022 Fully printed optoelectronic synaptic transistors based on quantum dot-metal oxide semiconductor heterojunctions ACS Nano 16 8651–61
[66] [66] Sun Y L, Li M J, Ding Y T, Wang H P, Wang H, Chen Z M and Xie D 2022 Programmable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption InfoMat 4 e12317
[67] [67] Wang K, Dai S L, Zhao Y W, Wang Y, Liu C and Huang J 2019 Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors Small15 1900010
[68] [68] Liu X, Huang W, Kai C, Yin L, Wang Y, Liu X, Pi X D and Yang D R 2023 Photogated synaptic transistors based on the heterostructure of 4H-SiC and organic semiconductors for neuromorphic ultraviolet vision ACS Appl. Electron.Mater. 5 367–74
[69] [69] Wang J C, Wang Q L T, Chen Q, Lei T, Lv W M, Tu H Y,Hu R, Wang Y P, Zeng Z M and Ma T Y 2022 A floating-gate-like transistor based on InSe vdW heterostructure with high-performance synaptic characteristics Phys. Status Solidi a 219 2200156
[70] [70] Sun Y L, Ding Y T, Xie D, Xu J L, Sun M X, Yang P F and Zhang Y F 2021 Optogenetics-inspired neuromorphic optoelectronic synaptic transistors with optically modulated plasticity Adv. Opt. Mater. 9 2002232
[71] [71] Wang S Y et al 2019 A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility Adv. Mater. 31 1806227
[72] [72] Yang B et al 2020 Bioinspired multifunctional organic transistors based on natural chlorophyll/organic semiconductors Adv. Mater. 32 2001227
[73] [73] Sun J X, Liu Y T, Yin Z G and Zheng Q D 2022 High-performance flexible photonic synapse transistors based on a bulk composite film of organic semiconductors with complementary absorption Acta Chim. Sin.80 936
[74] [74] Ke Y D, Yu R J, Lan S Q, He L H, Yan Y J, Yang H H,Shan L T, Chen H P and Guo T L 2021 Polymer bulk-heterojunction synaptic field-effect transistors with tunable decay constant J. Mater. Chem. C 9 4854–61
[75] [75] Van de Burgt Y, Lubberman E, Fuller E J, Keene S T,Faria G C, Agarwal S, Marinella M J, Alec Talin A and Salleo A 2017 A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing Nat. Mater. 16 414–8
[76] [76] Qian C, Kong L-A, Yang J L, Gao Y L and Sun J 2017 Multi-gate organic neuron transistors for spatiotemporal information processing Appl. Phys. Lett. 110 083302
[77] [77] Yu F, Zhu L Q, Gao W T, Fu Y M, Xiao H, Tao J and Zhou J M 2018 Chitosan-based polysaccharide-gated flexible indium tin oxide synaptic transistor with learning abilities ACS Appl. Mater. Interfaces 10 16881–6
[78] [78] Kong L-A, Sun J, Qian C, Fu Y, Wang J X, Yang J L and Gao Y L 2017 Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors Org. Electron. 47 126–32
[79] [79] Xu W T, Min S-Y, Hwang H and Lee T-W 2016 Organic core-sheath nanowire artificial synapses with femtojoule energy consumption Sci. Adv. 2 e1501326
[80] [80] Niu X Z, Tian B B, Zhu Q X, Dkhil B and Duan C G 2022 Ferroelectric polymers for neuromorphic computing Appl.Phys. Rev. 9 021309
[81] [81] Wang C, Agrawal A, Yu E and Roy K 2021 Multi-level neuromorphic devices built on emerging ferroic materials: a review Front. Neurosci. 15 661667
[82] [82] Tian B-B, Zhong N and Duan C-G 2020 Recent advances,perspectives, and challenges in ferroelectric synapses Chin. Phys. B 29 097701
[83] [83] Yan S A, Zang J Y, Xu P, Zhu Y F, Li G, Chen Q L, Chen Z J,Zhang Y, Tang M H and Zheng X J 2023 Recent progress in ferroelectric synapses and their applications Sci. China Mater. 66 877–94
[84] [84] He Y L, Zhu L, Zhu Y, Chen C S, Jiang S S, Liu R, Shi Y and Wan Q 2021 Recent progress on emerging transistor-based neuromorphic devices Adv. Intell. Syst. 3 2000210
[85] [85] Park C, Lee K, Koo M and Park C 2021 Soft ferroelectrics enabling high-performance intelligent photo electronics Adv. Mater. 33 2004999
[86] [86] Sun Y M, Wang Y F, Yuan Q, He N and Wen D Z 2022 Vertical organic ferroelectric synaptic transistor for temporal information processing Adv. Mater. Interfaces9 2201421
[87] [87] Hu D B, Wang X M, Chen H P and Guo T L 2017 High performance flexible nonvolatile memory based on vertical organic thin film transistor Adv. Funct. Mater. 27 1703541
[88] [88] Dudem B, Ko Y H, Leem J W, Lim J H and Yu J S 2016Hybrid energy cell with hierarchical nano/micro-architectured polymer film to harvest mechanical, solar, and wind energies individually/simultaneously ACS Appl. Mater. Interfaces 8 30165–75
[89] [89] Gao J, Zheng Y, Yu W, Wang Y N, Jin T Y, Pan X, Loh P andChen W 2021 Intrinsic polarization coupling in 2D α-In2Se3 toward artificial synapse with multimode operations SmartMat 2 88–98
[90] [90] Hu Z Q, Li Q, Li M Y, Wang Q W, Zhu Y D, Liu X L,Zhao X Z, Liu Y and Dong S X 2013 Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure Appl. Phys. Lett. 102 102901
[91] [91] Bu X B, Xu H, Shang D S, Li Y, Lv H B and Liu Q 2020 Ion-gated transistor: an enabler for sensing and computing integration Adv. Intell. Syst. 2 2000156
[92] [92] Hou Y-X et al 2021 Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing ACS Nano15 1497–508
[93] [93] Zhu Y B, Wu C X, Xu Z W, Liu Y, Hu H L, Guo T L,Kim T W, Chai Y and Li F S 2021 Light-emitting memristors for optoelectronic artificial efferent nerve Nano Lett. 21 6087–94
[94] [94] Chen J, Huang Y, Zhang N N, Zou H Y, Liu R Y, Tao C Y,Fan X and Wang Z L 2016 Micro-cable structured textile for simultaneously harvesting solar and mechanical energy Nat. Energy 1 16138
[95] [95] Stein B E and Stanford T R 2008 Multisensory integration: current issues from the perspective of the single neuron Nat. Rev. Neurosci. 9 255–66
[96] [96] Li E L, Wu X M, Chen Q Z, Wu S Y, He L H, Yu R J,Hu Y Y, Chen H P and Guo T L 2021 Nanoscale channel organic ferroelectric synaptic transistor array for high recognition accuracy neuromorphic computing Nano Energy 85 106010
[97] [97] Tian B B et al 2019 A robust artificial synapse based on organic ferroelectric polymer Adv. Electron. Mater.5 1800600
[98] [98] Jang S, Jang S, Lee E-H, Kang M J, Wang G and Kim T-W2019 Ultrathin conformable organic artificial synapse for wearable intelligent device applications ACS Appl. Mater.Interfaces 11 1071–80
[99] [99] Chang C et al 2022 Electret/high-k solution dielectric for low voltage synaptic transistors with near linear and ambipolar weight update IEEE Electron Device Lett. 43 1467–70
[100] [100] Chen G X, Yu X P, Gao C S, Dai Y, Hao Y X, Yu R J,Chen H P and Guo T L 2023 Temperature-controlled multisensory neuromorphic devices for artificial visual dynamic capture enhancement Nano Res. 16 7661–70
[101] [101] Li M-Z, Guo L-C, Ding G-L, Zhou K, Xiong Z-Y, Han S-T and Zhou Y 2021 Inorganic perovskite quantum dot-based strain sensors for data storage and in-sensor computing ACS Appl. Mater. Interfaces 13 30861–73
[102] [102] Lian H X, Liao Q F, Yang B D, Zhai Y B, Han S-T and Zhou Y 2021 Optoelectronic synaptic transistors based on upconverting nanoparticles J. Mater. Chem. C 9 640–8
[103] [103] Zhang G C, Ma C, Wu X M, Zhang X H, Gao C S, Chen H P and Guo T L 2022 Transparent organic nonvolatile memory and volatile synaptic transistors based on floating gate structure IEEE Electron Device Lett. 43 733–6
[104] [104] Zheng C Y, Liao Y, Han S-T and Zhou Y 2020 Interface modification in three-terminal organic memory and synaptic device Adv. Electron. Mater. 6 2000641
[105] [105] Zheng C Y, Liao Y, Wang J J, Zhou Y and Han S-T 2022 Flexible floating-gate electric-double-layer organic transistor for neuromorphic computing ACS Appl. Mater.Interfaces 14 57102–12
[106] [106] Zhou L, Mao J Y, Ren Y, Han S-T, Roy V A L and Zhou Y 2018 Recent advances of flexible data storage devices based on organic nanoscaled materials Small 14 1703126
[107] [107] Kim C-H, Sung S and Yoon M-H 2016 Synaptic organic transistors with a vacuum-deposited charge-trapping nanosheet Sci. Rep. 6 33355
[108] [108] Wan C J, Cai P Q, Wang M, Qian Y, Huang W and Chen X D2020 Artificial sensory memory Adv. Mater. 32 1902434
[109] [109] Wan C J et al 2018 An artificial sensory neuron with tactile perceptual learning Adv. Mater. 30 1801291
[110] [110] Zang Y P, Shen H G, Huang D Z, Di C-A and Zhu D B 2017 A dual-organic-transistor-based tactile-perception system with signal-processing functionality Adv. Mater.29 1606088
[111] [111] Lee Y and Lee T-W 2019 Organic synapses for neuromorphic electronics: from brain-inspired computing to sensorimotor nervetronics Acc. Chem. Res. 52 964–74
[112] [112] Liu Y Q, Zhong J F, Li E L, Yang H H, Wang X M, Lai D X,Chen H P and Guo T L 2019 Self-powered artificial synapses actuated by triboelectric nanogenerator Nano Energy 60 377–84
[113] [113] Kim Y et al 2018 A bioinspired flexible organic artificial afferent nerve Science 360 998–1003
[114] [114] Fan F-R, Lin L, Zhu G, Wu W Z, Zhang R and Wang Z L 2012 Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films Nano Lett. 12 3109–14
[115] [115] Wang X D, Zhang H L, Dong L, Han X, Du W M, Zhai J Y,Pan C F and Wang Z L 2016 Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping Adv. Mater. 28 2896–903
[116] [116] You I, Choi S-E, Hwang H, Han S W, Kim J W and Jeong U 2018 E-skin tactile sensor matrix pixelated by position-registered conductive microparticles creating pressure-sensitive selectors Adv. Funct. Mater. 28 1801858
[117] [117] Yuan Z Q, Zhou T, Yin Y Y, Cao R, Li C J and Wang Z L2017 Transparent and flexible triboelectric sensing array for touch security applications ACS Nano 11 8364–9
[118] [118] Zhang C, Bu T Z, Zhao J Q, Liu G X, Yang H and Wang Z L 2019 Tribotronics for active mechanosensation and self-powered microsystems Adv. Funct. Mater. 29 1808114
[119] [119] Zhang C, Zhao J Q, Zhang Z, Bu T Z, Liu G X and Fu X P 2023 Tribotronics: an emerging field by coupling triboelectricity and semiconductors Int. J. Extreme Manuf.5 042002
[120] [120] Wang Y, Lv Z Y, Chen J R, Wang Z P, Zhou Y, Zhou L,Chen X L and Han S-T 2018 Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing Adv. Mater. 30 1802883
[121] [121] Lee Y et al 2018 Stretchable organic optoelectronic sensorimotor synapse Sci. Adv. 4 eaat7387
[122] [122] Deng W, Zhang X J, Jia R F, Huang L M, Zhang X H and Jie J S 2019 Organic molecular crystal-based photosynaptic devices for an artificial visual-perception system NPG Asia Mater. 11 77
[123] [123] Yu J, Yang X X, Gao G Y, Xiong Y, Wang Y F, Han J,Chen Y H, Zhang H, Sun Q J and Wang Z L 2021 Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure Sci. Adv. 7 eabd9117
[124] [124] Krauhausen I et al 2021 Organic neuromorphic electronics for sensorimotor integration and learning in robotics Sci.Adv. 7 eabl5068
[125] [125] Jung Y H, Hong S K, Wang H S, Han J H, Pham T X,Park H, Kim J, Kang S, Yoo C D and Lee K J 2020 Flexible piezoelectric acoustic sensors and machine learning for speech processing Adv. Mater. 32 1904020
[126] [126] Rubel E W and Fritzsch B 2002 Auditory system development: primary auditory neurons and their targets Annu. Rev. Neurosci. 25 51–101
[127] [127] Seo D-G et al 2019 Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuro-prosthetics Nano Energy 65 104035
[128] [128] Sun L F, Zhang Y S, Hwang G, Jiang J B, Kim D,Eshete Y A, Zhao R and Yang H 2018 Synaptic computation enabled by joule heating of single-layered semiconductors for sound localization Nano Lett.18 3229–34
[129] [129] He Y L, Nie S, Liu R, Jiang S S, Shi Y and Wan Q 2019 Spatiotemporal information processing emulated by multiterminal neuro-transistor networks Adv. Mater.31 1900903
[130] [130] Liu Y Q, Liu D, Gao C S, Zhang X H, Yu R J, Wang X M,Li E L, Hu Y Y, Guo T L and Chen H P 2022 Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memorycomputing Nat. Commun. 13 7917
[131] [131] Shan L T, Liu Y Q, Zhang X H, Li E L, Yu R J, Lian Q M,Chen X, Chen H P and Guo T L 2021 Bioinspired kinesthetic system for human-machine interaction Nano Energy 88 106283
[132] [132] Choi D, Song M-K, Sung T, Jang S and Kwon J-Y 2020 Energy scavenging artificial nervous system for detecting rotational movement Nano Energy74 104912
[133] [133] Chen Z J, Yu R J, Yu X P, Li E L, Wang C Y, Liu Y Q,Guo T L and Chen H P 2022 Bioinspired artificial motion sensory system for rotation recognition and rapid self-protection ACS Nano 16 19155–64
[134] [134] Ren X B, Lu Z J, Zhang X J, Grigorian S, Deng W andJie J S 2022 Low-voltage organic field-effect transistors:challenges, progress, and prospects ACS Mater. Lett.4 1531–46
Get Citation
Copy Citation Text
Yaqian Liu, Minrui Lian, Wei Chen, Huipeng Chen. Recent advances in fabrication and functions of neuromorphic system based on organic field effect transistor[J]. International Journal of Extreme Manufacturing, 2024, 6(2): 22008
Received: Jul. 18, 2023
Accepted: --
Published Online: Sep. 6, 2024
The Author Email: Chen Huipeng (hpchen@fzu.edu.cn)