Acta Optica Sinica, Volume. 44, Issue 1, 0106002(2024)

Advances in High-Performance Optical Frequency Domain Distributed Fiber Optical Measuring and Sensing Technology

Jun Yang1,3,4、*, Cuofu Lin2, Chen Zou2, Zhangjun Yu1,3,4, Yuncai Wang1,3,4, and Yuwen Qin1,3,4
Author Affiliations
  • 1Institute of Advanced Photonics Technology, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • 2College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China
  • 3Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education of China, Guangzhou 510006, Guangdong, China
  • 4Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangzhou 510006, Guangdong, China
  • show less
    Figures & Tables(31)
    OFDR technology development process and milestones
    Basic structure and principle schematic of OFDR
    Classification and influence of noise in OFDR system
    Influence of the laser source phase noise on the PSF[66]. (a)(b) Influence of frequency tuning nonlinearity; (c) PSF under the influence of stochastic phase noise (linewidth is 200 kHz, tuning rate is 5 THz/s)
    Compensation results at each position when the measurement distance is 100 m[79]
    Flowchart of PPNE-deskew-filter algorithm[56]
    Compensation results of 8 km measurement distance[56]. (a) Comparison of the results by optimized deskew filter and PPNE deskew filter; (b) comparison of spatial resolution
    Transfer process of parameter under test based on RBS sensing
    Mapping diagram of RBS in spatial domain, spectral domain and phase domain
    Relationship diagram of OFDR sensing method performance
    Validation of extremal relationships for strain accuracy measurements. (a) Signal-to-noise ratio versus strain accuracy; (b) sweep range versus strain accuracy; (c) strain spatial resolution versus strain accuracy
    Demodulation process based on RBS spectral[103]
    Differential relative phase demodulation process based on RBS phase[107]
    OFDR sensing technology development thread
    Strain measuring results by SSM-OFDR[65]. (a) Results before and after spectral splicing; (b) close-up view; (c) large strain measuring
    Schematic illustrations of range ambiguity and spectral mismatch caused by strain[101,114]. (a) Principle of range ambiguity; (b) principle of spectral mismatch
    Algorithmic workflow[101,114]. (a) Local inter-correlation; (b) position compensation
    Workflow of the BM3D-SAPCA algorithm[119]
    Demodulation principles of SV-OFDR
    SV-OFDR distributed strain measuring results. (a) Large strain demodulation results; (b)(c) vibration signal demodulation results
    Typical OFDR instruments. (a) Luna OBR-4600; (b) Mega-Sense Co. LGA50; (c) GDUT OFDS
    Ultra-long distance optical fiber and link measuring application[55]. (a) Fiber link loss of OFDR controlled by optical phase locking; (b)(c) measurement accuracies of optical fiber loss at 10 km and 100 km
    Ultra-high precision optical chip measuring applications. (a)(b) Fabricated LiDAR chip and measured refection spectrum, where ∆R=10 µm/ng[129]; (c)(d) Y-waveguide and distributed polarization crosstalk measurement results[42]
    Typical application of distributed acoustic sensing[138]. (a) Observed acoustic signal in long-term deep sea floor observatory; (b)measured seismic profiles of the surface wave
    3 km fiber coil strain measurement results. (a) Strain results under different temperature excitations; (b) interlayer strain; (c) interturn strain
    • Table 1. Connotation and extension of distributed testing and sensing technology

      View table

      Table 1. Connotation and extension of distributed testing and sensing technology

      Location method

      Time

      domain

      Frequency

      domain

      Coherent

      domain

      Correlation domain

      (Chaos,coding)

      RBSIntensityν)OTDR18OFDR19OLCR/OCDR20Chaos-OTDR21
      PhaseΦ-OTDR22Φ-OFDR23Φ-OLCR24

      TGD-OFDR25

      (coherent detection)

      CP-Phi-OTDR26

      (direct detection)

      PolarizationPOTDR27POFDR13PS-OLCR28
      Raman scatteringSpontaneousROTDR29ROFDR30Chaos-ROTDR31
      StimulatedROTDA32
      Brillouin scatteringSpontaneousBOTDR33BOFDR34BOCDR35Chaos-BOTDR36
      StimulatedBOTDA37BOFDA38BOCDA39

      Chaos-BOTDA40

      BOCDA(coding)15

      Forward coupling/ scatteringPolarization crosstalkPOTDR41OFDP42OCDP43
      FSBS44FSBS-OTDA45
      BGDBGD-BOTDA46
    • Table 2. Comparison of frequency tuning nonlinearity compensation methods

      View table

      Table 2. Comparison of frequency tuning nonlinearity compensation methods

      MethodYearLaser parameterPerformanceRRP
      LinewidthTunable range
      Frequency samplingPolarization diversity detection132005200 kHz37.5 nm22 μm@35m1.59×106
      Resampling algorithmHTCM512005100 kHz1 nm3 cm@3 m1.00×102
      Envelope detection7420091 MHz1 nm0.4 cm@150 m3.75×104
      NUFFT7520121.2 MHz2 nm5 cm@50 m1.00×103
      Time-scale factor762019100 kHz9 nm0.17 mm@155 m9.12×105
      Intergrated point77202020 nm41 μm@50 m1.22×106
      Equal frequency782021200 kHz130 nm21.3 μm@191 m8.97×106
      Interpolation frequency792023200 kHz150 nm14.9 μm@100 m6.71×106
    • Table 3. Comparison of phase noise compensation methods

      View table

      Table 3. Comparison of phase noise compensation methods

      MethodYearLaser parameterPerformanceRRP
      LinewidthTunable range
      External modulationSSB-SC8020082 kHz16 GHzcm-level@5 km5.00×105
      Active servo-loopOPLL4920195 kHz1 GHz72 cm@200 km2.78×105
      High-order OPLL5520205 kHz8 GHz4.3 cm@242 km5.63×106
      Multi-loop812021A few kHz60 GHz1.67 mm@3.23 km1.93×106
      Dual-loop8220215 kHz8.2 GHz3.7 cm@185 km5.00×106
      PNC-based methodBandwidth-division8320114 kHz15 GHz5 cm@40 km8.00×105
      Hardware-adaptive8420191 kHz2 GHz7 cm@100 km1.43×106

      Deskew-

      filter-based algorithm

      Deskew filter5320131 kHz1 GHz1.6 m@80 km5.00×104
      Optimized deskew filter8520141 kHz1 GHz0.8 m@80 km1.00×105
      PPNE deskew filter56202260 kHz375 GHz522 μm@8 km1.53×107
    • Table 4. Analysis of constraints on OFDR sensing performance

      View table

      Table 4. Analysis of constraints on OFDR sensing performance

      Performance degradationMechanismNoiseEffectOrigins
      Poor sensing distance and spatial resolution

      Range

      ambiguity,

      RBS

      distortion

      Phase noiseNonlinear frequency sweeping

      Tunable laser

      Environmental

      Strain/Vibration

      Temperature

      Phase noise of laser
      Thermo-optic effect
      Elasto-optical effect

      Dispersion

      Strain accuracy and range degradationAmplitude noiseParasitic amplitude modulation
      Polarization fading

      Spectral filtering of device

    • Table 5. Overview of OFDR sensing performance

      View table

      Table 5. Overview of OFDR sensing performance

      MethodYearLengthSpatial resolutionStrain/TemperatureRate
      RangeAccuracy
      IntensitySpatial domain correlation analysis[96]201642 km11.6 mN/AN/A500 Hz
      Frequency controlled OTDR[94]20098 kmN/A2 με89 nεStatic(~s)
      0.22 ℃0.01 ℃
      PhasePhase accumulation[112]202213.5 m18 mm14000 με0.48 μεStatic(~s)
      Scattering enhancement[110]202210.4 m0.2 mm1400 με1.3 μεStatic(~s)
      Polarization diversity detection[111]20232.5 m1 mm400 με5 μεStatic(~s)
      SpectralSpectral splicing[65]20231 km1 cm10000 με±1.1 µεStatic(~s)
      Nonlinear correction[73]2014300 m7 cm568 με2.3 μεStatic(~s)
      50 ℃0.7 ℃Static(~s)
      Kalman prediction[100]202250 m5 mm10000 με5 µεStatic(~s)
      450 ℃0.5 ℃
      Zero-mean normalized cross correlation[102]201822 m1.6 cm5000 με50 μεStatic(~s)
      Distance compensation[98]202210.4 m2 mm10000 μεN/AStatic(~s)
      Spectral vernier202310 m20 cm10856 με0.4 με19 nε/Hz2.4 kHz
      Spectrum registration & GPU(graphics processing unit)[92]20191.2 m5 mm200 με20 με100 Hz
      1000 με20 Hz
    • Table 6. Performance comparison of OFDR instruments

      View table

      Table 6. Performance comparison of OFDR instruments

      TypeCountryMakerModelLengthSpatial resolutionAmplitudeMeasuring rate
      RangeAccuracy
      RBSUSALuna Inc.OBR-460070 m20 μm80 dB-130 dB3 s
      2 km1 mm60 dB
      ChinaJun LongOFDR120 m5 mm65 dB-65 dB15 s
      BACIRIOFFD-L-250225 m2 mm50 dB-120 dB1 s
      Mega-Sense Co.OCI100 m20 μm80 dB-130 dB12 s
      GDUTOFDR-D100 m20 μm90 dB-135 dB5 s
      OFDR-F5 km0.5 mm70 dB-130 dB10 s
      JapanSantecSPA-1004.5 m6 μm70 dB-135 dB5 s
      SensingUSALuna Inc.OBR-460070 m1 cm±15000 με±1 με3 s
      ODiSI-600020 m0.65 mm±15000 με±5 με12.5 Hz
      100 m2.6 mm±15000 με±2 με10 Hz
      ChinaMega-Sense Co.OSI-S100 m1 mm(min)±12000 με±1 με
      OSI-D20 m0.65 mm±12000 με±4 με50 Hz
      GDUT.OFDS-H100 m2 mm±12000 με±2 με8 s
      OFDS-S5 km5 cm±12000 με±0.5 με30 s
    Tools

    Get Citation

    Copy Citation Text

    Jun Yang, Cuofu Lin, Chen Zou, Zhangjun Yu, Yuncai Wang, Yuwen Qin. Advances in High-Performance Optical Frequency Domain Distributed Fiber Optical Measuring and Sensing Technology[J]. Acta Optica Sinica, 2024, 44(1): 0106002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Sep. 14, 2023

    Accepted: Nov. 8, 2023

    Published Online: Jan. 5, 2024

    The Author Email: Yang Jun (yangj@gdut.edu.cn)

    DOI:10.3788/AOS231551

    Topics