Infrared and Laser Engineering, Volume. 49, Issue 1, 113005(2020)
Research on pose measurement and ground object recognition technology based on C-TOF imaging
[1] [1] Yano H, Kubota T, Miyamoto H, et al. Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa[J]. Science, 2006, 312(5778): 1350-1353.
Yano H, Kubota T, Miyamoto H, et al. Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa[J]. Science, 2006, 312(5778): 1350-1353.
[2] [2] Tsuchiyama A, Uesugi M, Matsushima T, et al. Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa regolith[J]. Science, 2011, 333(6046): 1125-1128.
Tsuchiyama A, Uesugi M, Matsushima T, et al. Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa regolith[J]. Science, 2011, 333(6046): 1125-1128.
[3] [3] Tsuda Y, Yoshikawa M, Abe M, et al. System design of the Hayabusa 2-Asteroid sample return mission to 1999 JU3[J]. Acta Astronautica, 2013, 91: 356-362.
Tsuda Y, Yoshikawa M, Abe M, et al. System design of the Hayabusa 2-Asteroid sample return mission to 1999 JU3[J]. Acta Astronautica, 2013, 91: 356-362.
[4] [4] Tsuda Y, Yoshikawa M, Saiki T, et al. Hayabusa2-Sample return and kinetic impact mission to near-earth asteroid Ryugu[J]. Acta Astronautica, 2019, 156: 387-393.
Tsuda Y, Yoshikawa M, Saiki T, et al. Hayabusa2-Sample return and kinetic impact mission to near-earth asteroid Ryugu[J]. Acta Astronautica, 2019, 156: 387-393.
[5] [5] Titterton D H. Military Laser Technology and Systems[M]. US: Artech House, 2015.
Titterton D H. Military Laser Technology and Systems[M]. US: Artech House, 2015.
[8] [8] Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE International Conference on Robotics and Automation. IEEE, 2009: 3212-3217.
Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE International Conference on Robotics and Automation. IEEE, 2009: 3212-3217.
[9] [9] Zhang Z. Iterative point matching for registration of free-form curves and surfaces[J]. International Journal of Computer Vision, 1994, 13(2): 119-152.
Zhang Z. Iterative point matching for registration of free-form curves and surfaces[J]. International Journal of Computer Vision, 1994, 13(2): 119-152.
[10] [10] Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm[C]//3-D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on. IEEE, 2001: 145-152.
Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm[C]//3-D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on. IEEE, 2001: 145-152.
[11] [11] Biber P, Strasser W. The normal distributions transform: A new approach to laser scan matching[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2003)(Cat. No. 03CH37453). IEEE, 2003, 3: 2743-2748.
Biber P, Strasser W. The normal distributions transform: A new approach to laser scan matching[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2003)(Cat. No. 03CH37453). IEEE, 2003, 3: 2743-2748.
[12] [12] Lu Chunqing, Liu Xingtan, Wu Yanpeng, et al. Computer simulation technology of time-of-flight imaging system[J]. Aerospace Control and Application, 2019, 45(2): 56-66. (in Chinese)
Lu Chunqing, Liu Xingtan, Wu Yanpeng, et al. Computer simulation technology of time-of-flight imaging system[J]. Aerospace Control and Application, 2019, 45(2): 56-66. (in Chinese)
[13] [13] Yue X, Wu B, Seshia S A, et al. A lidar point cloud generator: from a virtual world to autonomous driving[C]//Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval. ACM, 2018: 458-464.
Yue X, Wu B, Seshia S A, et al. A lidar point cloud generator: from a virtual world to autonomous driving[C]//Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval. ACM, 2018: 458-464.
[14] [14] Wu B, Wan A, Yue X, et al. Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 1887-1893.
Wu B, Wan A, Yue X, et al. Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 1887-1893.
[15] [15] Wu B, Zhou X, Zhao S, et al. Squeezesegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 4376-4382.
Wu B, Zhou X, Zhao S, et al. Squeezesegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 4376-4382.
[16] [16] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
Get Citation
Copy Citation Text
Lu Chunqing, Yang Mengfei, Wu Yanpeng, Liang Xiao. Research on pose measurement and ground object recognition technology based on C-TOF imaging[J]. Infrared and Laser Engineering, 2020, 49(1): 113005
Category: 光电测量
Received: May. 5, 2019
Accepted: Jun. 15, 2019
Published Online: Jun. 8, 2020
The Author Email: Chunqing Lu (cust0702@sina.com)