Ultrafast Science, Volume. 4, Issue 1, 0060(2024)
External-Magnetic-Field-Free Spintronic Terahertz Strong-Field Emitter
[1] [1] Dong T, Zhang SJ, Wang NL. Recent development of ultrafast optical characterizations for quantum materials. Adv Mater. 2022;35(27):2110068.
[3] [3] Bao C, Tang P, Sun D, Zhou S. Light-induced emergent phenomena in 2D materials and topological materials. Nat Rev Phys. 2022;4(1):33–48.
[4] [4] Sekiguchi F, Hirori H, Yumoto G, Shimazaki A, Nakamura T, Wakamiya A, Kanemitsu Y. Enhancing the hot-phonon bottleneck effect in a metal halide perovskite by terahertz phonon excitation. Phys Rev Lett. 2021;126(7): 077401.
[5] [5] Filippetto D, Musumeci P, Li RK, Siwick BJ, Otto MR, Centurion M, Nunes JPF. Ultrafast electron diffraction: Visualizing dynamic states of matter. Rev Mod Phys. 2022;94(4):045004.
[6] [6] Tang H, Zhao L, Zhu P, Zou X, Qi J, Cheng Y, Qiu J, Hu X, Song W, Xiang D, et al. Stable and scalable multistage terahertz-driven particle accelerator. Phys Rev Lett. 2021;127(7): 074801.
[7] [7] Xu H, Yan L, Du Y, Huang W, Tian Q, Li R, Liang Y, Gu S, Shi J, Tang C. Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams. Nat Photonics. 2021;15(6):426–430.
[10] [10] Li X, Qiu T, Zhang JH, Baldini E, Lu J, Rappe AM, Nelson KA. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science. 2019;364(6445):1079–1082.
[12] [12] Mashkovich EA, Grishunin KA, Dubrovin RM, Zvezdin AK, Pisarev RV, Kimel AV. Terahertz light-driven coupling of antiferromagnetic spins to lattice. Science. 2021;374(6575):1608–1611.
[13] [13] Liao G, Liu H, Scott GG, Zhang Y, Zhu B, Zhang Z, Li Y, Armstrong C, Zemaityte E, Bradford P, et al. Towards terawatt-scale spectrally tunable terahertz pulses via relativistic laser-foil interactions. Phys Rev X. 2020;10(3): 031062.
[14] [14] Jia W, Liu M, Lu Y, Feng X, Wang Q, Zhang X, Ni Y, Hu F, Gong M, Xu X, et al. Broadband terahertz wave generation from an epsilon-near-zero material. Light Sci Appl. 2021;10(1):11.
[15] [15] Koulouklidis AD, Gollner C, Shumakova V, Fedorov VY, Pugzlys A, Baltuska A, Tzortzakis S. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat Commun. 2020;11(1):292.
[16] [16] Yiwen E, Zhang L, Tcypkin A, Kozlov S, Zhang C, Zhang X-C. Broadband THz sources from gases to liquids. Ultrafast Sci. 2021;2021:9892763.
[17] [17] Tian Y, Liu J, Bai Y, Zhou S, Sun H, Liu W, Zhao J, Li R, Xu Z. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation. Nat Photonics. 2017;11(4):242–246.
[18] [18] Dey I, Jana K, Fedorov VY, Koulouklidis AD, Mondal A, Shaikh M, Sarkar D, Lad AD, Tzortzakis S, Couairon A, et al. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nat Commun. 2017;8(1):1184.
[22] [22] Wu X. Extreme THz radiation from lithium niobite materials. Chin Phys Lett. 2023;40(5):54001.
[24] [24] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat Photonics. 2016;10(7):483–488.
[25] [25] Gueckstock O, Nadvornik L, Gradhand M, Seifert TS, Bierhance G, Rouzegar R, Wolf M, Vafaee M, Cramer J, Syskaki MA, et al. Terahertz spin-to-charge conversion by interfacial skew scattering in metallic bilayers. Adv Mater. 2021;33(9):2006281.
[27] [27] Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H. High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures. Adv Mater. 2017;29(4):1603031.
[28] [28] Zhou C, Liu YP, Wang Z, Ma SJ, Jia MW, Wu RQ, Zhou L, Zhang W, Liu MK, Wu YZ, et al. Broadband terahertz generation via the interface inverse Rashba-Edelstein effect. Phys Rev Lett. 2018;121(8): 086801.
[29] [29] Gao Y, Kaushik S, Philip EJ, Li Z, Qin Y, Liu YP, Zhang WL, Su YL, Chen X, Weng H, et al. Chiral terahertz wave emission from the Weyl semimetal TaAs. Nat Commun. 2020;11(1):720.
[31] [31] Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Klaeui M, Kampfrath T. Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV/cm from a metallic spintronic emitter. Appl Phys Lett. 2017;110(25):252402.
[32] [32] Rouzegar R, Chekhov AL, Behovits Y, Serrano BR, Syskaki MA, Lambert CH, Engel D, Martens U, Münzenberg M, Wolf M, et al. Broadband spintronic terahertz source with peak electric fields exceeding 1.5 MV/cm. Phys. Rev. Appl. 2023;19(3): 034018.
[33] [33] Jin Z, Peng Y, Ni Y, Wu G, Ji B, Wu X, Zhang Z, Ma G, Zhang C, Chen L, et al. Cascaded amplification and manipulation of terahertz emission by flexible spintronic heterostructures. Laser Photonics Rev. 2022;16(9):2100688.
[34] [34] Zhou J, Xu H, Shi Y, Li J. Terahertz driven reversible topological phase transition of monolayer transition metal dichalcogenides. Adv Sci. 2021;8(12):2003832.
[37] [37] Jacobs KJP, Murakami H, Murakami F, Serita K, Beyne E, Tonouchi M. Characterization of through-silicon vias using laser terahertz emission microscopy. Nat Electron. 2021;4(3):202–207.
Get Citation
Copy Citation Text
Shaojie Liu, Zejun Ren, Peng Chen, Sai Chen, Mingxuan Zhang, Zehao Yang, Deyin Kong, Jinguang Wang, Yifei Li, Jinglong Ma, Xin Lu, Baolong Zhang, Zhongkai Liu, Xiufeng Han, Caihua Wan, Yutong Li, Ranjan Singh, Xiaojun Wu. External-Magnetic-Field-Free Spintronic Terahertz Strong-Field Emitter[J]. Ultrafast Science, 2024, 4(1): 0060
Category: Research Articles
Received: Nov. 30, 2023
Accepted: Mar. 1, 2024
Published Online: Dec. 13, 2024
The Author Email: Wan Caihua (wancaihua@iphy.ac.cn), Li Yutong (ytli@iphy.ac.cn), Wu Xiaojun (xiaojunwu@buaa.edu.cn)