Journal of the Chinese Ceramic Society, Volume. 51, Issue 2, 332(2023)
Recent Advances and Perspectives on Melt Structures of Large-Size Functional Oxide Crystals
[1] [1] SUN C, XUE D. Crystal growth and design of sapphire: Experimental and calculation studies of anisotropic crystal growth upon pulling directions[J]. Cryst Growth Des, 2014, 14(5): 2282?2287.
[2] [2] ALOMBERT-GOGET G, TRICHARD F, LI H, et al. Titanium distribution profiles obtained by luminescence and LiBS measurements on Ti: Al2O3 grown by Cczochralski and Kyropoulos techniques[J]. Opt Mater, 2017, 65: 28?32.
[3] [3] LI H, GHEZAL E A, ALOMBERT-GOGET G, et al. Qualitative and quantitative bubbles defects analysis in undoped and Ti-doped sapphire crystals grown by Czochralski technique[J]. Opt Mater, 2014, 37: 132?138.
[4] [4] LIANG X N, XU X W, CHONG T C, et al. Single domain structure and two-color holographic recording in LiNbO3:Cu:Ce Crystals grown by the vertical Bridgman method[J]. J Cryst Growth, 2006, 287(2): 463?467.
[5] [5] SAMANTA G, YECKEL A, DAGGOLU P, et al. Analysis of limits for sapphire growth in a micro-pulling-down system[J]. J Cryst Growth, 2011, 335(1): 148?159.
[6] [6] CONGTING S, DONGFENG X, Chemical bonding in micro-pulling down process: High throughput single crystal growth[J]. Sci China: Technol Sci, 2018, 61(11): 1776?1778.
[7] [7] XIA Z, SHAO-TANG Y, SONG-MING W, et al. Raman spectrum analysis on the solid-liquid boundary layer of BGO crystal growth[J]. Chin Phys Lett, 2007, 24(7): 1898?1900.
[8] [8] WAN S, ZHANG X, ZHAO S, et al. Raman spectroscopy study on CsB3O5 crystal?melt boundary layer structure[J]. Cryst Growth Des, 2008, 8(2): 412?414.
[9] [9] ZHOU Wenping, WAN Songming, ZHANG Qingli, et al. Micro-structure of growth solid-liquid boundary layer of KTa1?xNbxO3 crystal[J]. Acta Phys Sin-Ch Ed, 2010, 59(7): 5085?5090.
[10] [10] WANG D, WAN S, YIN S, et al. High temperature Raman spectroscopy study on the microstructure of the boundary layer around a growing LiB3O5 crystal[J]. Cryst Eng Comm, 2011, 13(16): 5239?5242.
[11] [11] ZHANG D, WANG D, ZHANG J, et al. In situ investigation of the microstructure of KGd(WO4)2 crystal growth boundary layer by confocal laser Raman microscopy[J]. Cryst Eng Comm, 2012, 14(24): 8722?8726.
[12] [12] WEBER J, NORDINE P. Containerless liquid-phase processing at high temperatures[J]. Microgravity Sci Technol, 1995, 7: 279?282.
[13] [13] KRISHNAN S, WEBER J K R, FELTEN J J, et al. Structure of liquid aluminum oxide[J]. Phys Rev Lett, 1997, 78(3): 464?466.
[14] [14] SKINNER L B, BARNES A C, SALMON P S, et al. Joint diffraction and modeling approach to the structure of liquid alumina[J]. Phys Rev B, 2013, 87(2): 024201.
[15] [15] NORDINE P C, WEBER J K R, ABADIE J G. Properties of high-temperature melts using levitation[J]. Pure Appl Chem, 2000, 72(11): 2127?2136.
[16] [16] XUE D, CHEN K. Rapid growth theory and technology of large-size rare earth crystals[C]//2021 academic annual meeting of China Rare Earth Society (in Chinese), Chengdu, Sichuan, China, 2021: 257.
[17] [17] FISCHER H E, BARNES A C, SALMON P S. Neutron and X-ray diffraction studies of liquids and glasses[J]. Rep Prog Phys, 2005, 69(1): 233?299.
[18] [18] ANDONOV P, CHIEUX P, KIMURA S, et al. Local order refinement in liquid lithium niobate using a two radiation method (X-rays and neutrons)[J]. Z Naturforsch A, 1993, 48(10): 955?964.
[19] [19] ANDONOV P, KIMURA S, SAWADA T. Clustering in the LiNbO3 melt[J]. J Non-Cryst Solids, 1993(156?158): 783?786.
[20] [20] SKINNER L B, BENMORE C J, WEBER J K R, et al. Low cation coordination in oxide melts[J]. Phys Rev Lett, 2014, 112(15): 157801.
[21] [21] SUN C, CHEN X, XUE D. Hydrogen bonding dependent mesoscale framework in crystalline Ln(H2O)9(Cf3SO3)3[J]. Cryst Growth Des, 2017, 17(5): 2631?2638.
[22] [22] BANTZ K C, MEYER A F, WITTENBERG N J, et al. Recent progress in SERS biosensing[J]. Phys Chem Chem Phys, 2011, 13(24): 11551?11567.
[23] [23] JONES R R, HOOPER D C, ZHANG L, et al. Raman techniques: Fundamentals and frontiers[J]. Nanoscale Res Lett, 2019, 14(1): 231.
[24] [24] KAWATA S, ICHIMURA T, TAGUCHI A, et al. Nano-Raman scattering microscopy: resolution and enhancement[J]. Chem Rev, 2017, 117(7): 4983?5001.
[25] [25] ZHANG S, WAN S, ZENG Y, et al. In situ Raman spectroscopy and DFT studies of the Li2GeO3 melt structure[J]. Inorg Chem, 2019, 58(8): 5025?5030.
[26] [26] ZHOU F, YOU J, WANG Y, et al. High temperature Raman spectroscopic for the structure of crystal and its melt of PbWO4[J]. Spectrosc Spectr Anal, 2010, 30(6): 1507?1510.
[27] [27] ZHANG X, WAN S, ZHANG Q, et al. High temperature Raman spectroscopic for the structure of crystal and its melt of Bi4Ge3O12[J](in Chinese). Acta Phys Sin, 2007(2): 1152?1155.
[28] [28] XUE D, WANG H. In-situ micro-spectroscopy technique for chemical bonding during nucleation: A transition from soft bond to stiff bond[J]. Sci China: Technol Sci, 2020(9): 1868?1870.
[29] [29] ZHU Y, LIN S, LIU Z, et al. In situ visualization of the quasi-periodic crystal growth interface fluctuation by growth interface electromotive force spectrum in a Czochralski system[J]. Cryst Eng Comm, 2019, 21(7): 1107?1113.
[30] [30] ZHU Y, TANG F, YANG X, et al. In-situ detection of convection and rotation striations by growth interface electromotive force spectrum[J]. J Cryst Growth, 2018, 487: 120?125.
[31] [31] ZHU Y, MA D, LONG S, et al. In-situ detection of growth striations by crystallization electromotive force measurement during Czochralski crystal growth[J]. J Cryst Growth, 2017, 475: 70?76.
[32] [32] ALLEN M P, TILDESLEY D J. Computer Simulation of Liquids[M]. Great Clarendon Street, Oxford, OX2 6DP, United Kingdom, Oxford University Press: 2017.
[33] [33] HONG N V, HUY N V, HUNG P K. The correlation between coordination and bond angle distribution in network-forming liquids[J]. Mater Sci-Pol, 2012, 30(2): 121?130.
[34] [34] HONG N V, HUY N V, HUNG P K. The structure and dynamic in network forming liquids: molecular dynamic simulation[J]. Int J Comput Mater Sci Surf Eng, 2012, 5(1): 55?67.
[35] [35] HA N T T, HONG N V, HUNG P K. Network structure and dynamics heterogeneities in Al2O3 system: Insight from visualization and analysis of molecular dynamics data[J]. Indian J Phys, 2019, 93(8): 971?978.
[36] [36] KIEN P H, AN P M, TRANG G T T, et al. The structural transition under compression and correlation between structural and dynamical heterogeneity for liquid Al2O3[J]. Int J Mod Phys B, 2019, 33(31): 1950380.
[37] [37] MORRIS J R. Complete mapping of the anisotropic free energy of the crystal-melt interface in Al[J]. Phys Rev B, 2002, 66(14): 144104.
[38] [38] GAO Q, AI J D, TANG S X, et al. Fast crystal growth at ultra-low temperatures[J]. Nat Mater, 2021, 20(10): 1431?1439.
[39] [39] LANDRON C, HENNET L, JENKINS T E, et al. Liquid alumina: Detailed atomic coordination determined from neutron diffraction data using empirical potential structure refinement[J]. Phys Rev Lett, 2001, 86(21): 4839?4842.
[40] [40] LANDRON C, SOPER A K, JENKINS T E, et al. Measuring neutron scattering structure factor for liquid alumina and analysing the radial distribution function by empirical potential structural refinement[J]. J. Non-Cryst Solids, 2001, 293?295: 453?457.
[41] [41] HUNG P K, NHAN N T, VINH L T. Molecular dynamic simulation of liquid Al2O3 under densification[J]. Modell Simul Mater Sci Eng, 2009, 17(2): 025003.
[42] [42] SAN MIGUEL M A, FERN?NDEZ SANZ J, ?LVAREZ L J, et al. Molecular-dynamics simulations of liquid aluminum oxide[J]. Phys Rev B, 1998, 58(5): 2369?2371.
[43] [43] GUTI?RREZ G, BELONOSHKO A B, AHUJA R, et al. Structural properties of liquid Al2O3 a molecular dynamics study[J]. Phys Rev E, 2000, 61(3): 2723?2729.
[44] [44] POE B T, MCMILLAN P F, COTE B, et al. Silica-alumina liquids: In-situ study by high-temperature aluminum-27 NMR spectroscopy and molecular dynamics simulation[J]. J Phys Chem, 1992, 96(21): 8220?8224.
[45] [45] FLORIAN P, MASSIOT D, POE B, et al. A time resolved 27Al NMR study of the cooling process of liquid alumina from 2 450 ℃ to crystallisation[J]. Solid State Nucl Magn Reson, 1995, 5(3): 233?238.
[46] [46] HEMMATI M, WILSON M, MADDEN P A. Structure of liquid Al2O3 from a computer simulation model[J]. J Phys Chem B, 1999, 103(20): 4023?4028.
[47] [47] SATO R, MCMILLAN P, DENNISON P, et al. High-resolution aluminum-27 and silicon-29 MAS NMR investigation of silica-alumina glasses[J]. J Phys Chem, 1991, 95(11): 4483?4489.
[48] [48] WILSON M, MADDEN P A. A Generic ionic potential for the alkaline-earth oxides and the anomalous crystal structure of ZnO[J]. Mol Phys, 1997, 90(1): 75?84.
[49] [49] MEADE C, HEMLEY R J, MAO H. High-pressure X-ray diffraction of SiO2 glass[J]. Phys Rev Lett, 1992, 69(9): 1387.
[50] [50] AHUJA R, BELONOSHKO A B, JOHANSSON B. Melting and liquid structure of aluminum oxide using a molecular-dynamics simulation[J]. Phys Rev E, 1998, 57(2): 1673?1676.
[51] [51] LEE S K, LEE S B, PARK S Y, et al. Structure of amorphous aluminum oxide[J]. Phys Rev Lett, 2009, 103(9): 095501.
[52] [52] LEVI C G, JAYARAM V, VALENCIA J J, et al. Phase selection in electrohydrodynamic atomization of alumina[J]. J Mater Res, 1988, 3(5): 969?983.
[53] [53] WEBER J K R, ANDERSON C D, MERKLEY D R, et al. Solidification behavior of undercooled liquid aluminum oxide[J]. J Am Ceram Soc, 1995, 78(3): 577?582.
[54] [54] KOB W, ANDERSEN H C. Testing mode-coupling theory for a supercooled binary lennard-jones mixture I: The Van hove correlation function[J]. Phys Rev E, 1995, 51(5): 4626?4641.
[55] [55] VOLLMAYR-LEE K. Single particle jumps in a binary lennard-jones system below the glass transition[J]. J Chem Phys, 2004, 121(10): 4781?4794.
[56] [56] ROYALL C P, WILLIAMS S R. The role of local structure in dynamical arrest[J]. Phys Rep, 2015, 560: 1?75.
[57] [57] VERMA A K, MODAK P, KARKI B B. First-principles simulations of thermodynamical and structural properties of liquid Al2O3 under pressure[J]. Phys Rev B, 2011, 84(17): 174116.
[58] [58] HOANG V V, OH S K. Simulation of pressure-induced phase transition in liquid and amorphous Al2O3[J]. Phys Rev B, 2005, 72(5): 054209.
[59] [59] WANG Z, MAO H, SAXENA S K. The melting of corundum (Al2O3) under high pressure conditions[J]. J Alloys Compd, 2000, 299(1): 287?291.
[60] [60] HUNG P K, VINH L T, NHAN N T, et al. Local structure of liquids Al2O3 and GeO2 under densification[J]. J Non-Cryst Solids, 2008, 354(26): 3093?3097.
[61] [61] SUN C, XUE D. Crystal growth: An anisotropic mass transfer process at the interface[J]. Phys Chem Chem Phys, 2017, 19(19): 12407?12413.
[62] [62] SUN C, XUE D. Chemical bonding theory of single crystal growth and its application to ? 3′′ YAG bulk crystal[J]. Cryst Eng Comm, 2014, 16(11): 2129?2135.
[63] [63] SUN C, XUE D. Chemical bonding theory of single crystal growth and its application to fast single crystal growth of rare earth inorganic materials[J]. Sci Sin Chim, 2018, 48(8): 804?814.
[64] [64] WEBER J K R, KRISHNAN S, ANSELL S, et al. Structure of liquid Y3Al5O12 (YAG)[J]. Phys Rev Lett, 2000, 84(16): 3622?3625.
[65] [65] HENNET L, KRISHNAN S, POZDNYAKOVA I, et al. Structure and dynamics of levitated liquid materials[J]. Pure Appl Chem, 2007, 79(10): 1643?1652.
[66] [66] CRISTIGLIO V, HENNET L, CUELLO G J, et al. Structure of molten yttrium aluminates: A neutron diffraction study[J]. J Phys: Condens Matter, 2007, 19(41): 415105.
[67] [67] CRISTIGLIO V, HENNET L, CUELLO G J, et al. Ab-initio molecular dynamics simulations of the structure of liquid aluminates[J]. J Non-Cryst Solids, 2007, 353(18?21): 1789?1792.
[68] [68] WILDING M C, WILSON M, MCMILLAN P F. X-ray and neutron diffraction studies and MD simulation of atomic configurations in polyamorphic Y2O3-Al2O3 systems[J]. Philos Trans R Soc, London, 2005, 363(1827): 589?607.
[69] [69] MCMILLAN P F, WILSON M, WILDING M C, et al. Polyamorphism and liquid-liquid phase transitions: Challenges for experiment and theory[J]. J Phys: Condens Matter, 2007, 19(41): 415101.
[70] [70] CHEN K, ZHU Y, LIU Z, et al. State of the art in crystallization of LiNbO3 and their applications[J]. Molecules, 2021, 26(22): 7044.
[71] [71] LI K, KANG C, XUE D. Effect of electrostatic and size on dopant occupancy in lithium niobate single crystal[J]. Inorg Chem, 2013, 52(17): 10206?10210.
[72] [72] CHEN K, LI Y, PENG C, et al. Microstructure and defect characteristics of lithium niobate with different Li concentrations[J]. Inorg Chem Front, 2021, 8(17): 4006?4013.
[73] [73] SUN C, XUE D. Multisize and multiweight effects in materials science and engineering[J]. Sci China: Technol Sci, 2019, 62(4): 707?710.
[74] [74] YIN S. Micro Mechanism of Crystal Growth and Boundary Layer Model of Crystal Growth[M]. Science Press, 2020.
[75] [75] ANDONOV P, CHIEUX P, KIMURA S. Local order in the LiNbO3 melt: Comparison with the crystalline phases[J]. Phys Scr, 1995, T57: 36?44.
[76] [76] BOYSEN H, ALTORFER F. A Neutron Powder investigation of the high-temperature structure and phase transition in LiNbO3[J]. Acta Crystallogr Sect B, 1994, 50(4): 405?414.
[77] [77] ZOTOV N, BOYSEN H, FREY F, et al. Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction[J]. J Phys Chem Solids, 1994, 55(2): 145?152.
[78] [78] XUE D, KITAMURA K, WANG J. Atomic packing and octahedral linking model of lithium niobate single crystals[J]. Opt Mater, 2003, 23(1): 399?402.
[79] [79] S?NCHEZ-DENA O, FIERRO-RUIZ C D, VILLALOBOS- MENDOZA S D, et al. Lithium niobate single crystals and powders reviewed-part I[J]. Crystals, 2020, 10(11): 973.
[80] [80] SUGIYAMA K, NOMURA K, WASEDA Y, et al. The local ordering of molten LiNbO3 by X-ray diffraction[J]. Z Naturforsch A, 1990, 45(11/12): 1325?1327.
[81] [81] ANDONOV P, KIMURA S, PALLEAU P. Macroclustering in liquid lithium niobate[J]. J Non-Cryst Solids, 1996, 205?207: 163?167.
[82] [82] ANDONOV P, FISCHER H E, PALLEAU P, et al. Structural study of liquid lithium niobate by neutron diffraction role of the Li atom in the clustering near solidification[J]. Z Naturforsch A, 2001, 56(5): 395?406.
[83] [83] SUGIYAMA K, SAITO M, WASEDA Y. Structural study of liquid LiNbO3 by the high-temperature energy dispersive X-ray diffraction coupled with reverse monte carlo simulation[J]. J Cryst Growth, 2009, 311(3): 966?969.
[84] [84] UDA S, KOYAMA C. The population and activity of oxygen in the diffusion boundary layer within a congruent LiNbO3 melt[J]. J Cryst Growth, 2020, 548: 125837.
[85] [85] UDA S, TILLER W A. The dissociation and ionization of LiNbO3 melts[J]. J Cryst Growth, 1992, 121(1): 155?190.
[86] [86] VORON’KO Y K, KUDRYAVTSEV A B, OSIKO V V, et al. Raman spectroscopy of Li2O-Nb2O5 melts[J]. Kratk Soobshch Fiz, 1987(2): 34?36.
Get Citation
Copy Citation Text
LIU Feng, CHEN Kunfeng, PENG Chao, XUE Dongfeng. Recent Advances and Perspectives on Melt Structures of Large-Size Functional Oxide Crystals[J]. Journal of the Chinese Ceramic Society, 2023, 51(2): 332
Special Issue:
Received: Apr. 18, 2022
Accepted: --
Published Online: Mar. 11, 2023
The Author Email: