Acta Photonica Sinica, Volume. 51, Issue 8, 0851503(2022)
Narrow Linewidth Laser Technology and Development(Invited)
[1] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).
[2] MAIMAN T H. Optical and microwave-optical experiments in ruby[J]. Physical Review Letters, 4, 564(1960).
[3] SONG Weilian. The developmental of laser processing technology[J]. Laser & Infrared, 36, 755-758(2006).
[4] MURRAY K K, SENEVIRATNE C A, GHORAI S. High resolution laser mass spectrometry bioimaging[J]. Methods, 104, 118-126(2016).
[5] PREDEHL K, GROSCHE G, RAUPACH S M F et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 336, 441-444(2012).
[6] UCHIDA A, AMANO K, INOUE M et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2, 728-732(2008).
[7] WANG Ruifeng, ZHANG Yanpu, XU Zhiyan. Present situation and developing trend of application of laser technique to military[J]. Infrared & Laser Engineering, 36, 308-311(2007).
[8] GORDON J P, ZEIGER H J, TOWNES C H. The maser-new type of microwave amplifier, frequency standard, and spectrometer[J]. Physical Review, 99, 1264(1955).
[9] SCHAWLOW A L, TOWNES C H. Infrared and optical masers[J]. Physical Review, 112, 1940(1958).
[10] HENRY C. Theory of the linewidth of semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 18, 259-264(1982).
[11] GUAN B O, TAM H Y, LAU S T et al. Ultrasonic hydrophone based on distributed Bragg reflector fiber laser[J]. IEEE Photonics Technology Letters, 17, 169-171(2004).
[12] FOSTER S B, CRANCH G A, HARRISON J et al. Distributed feedback fiber laser strain sensor technology[J]. Journal of Lightwave Technology, 35, 3514-3530(2017).
[13] ZHENG Y, GAO C, WANG R et al. Single frequency 1645 nm Er: YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode[J]. Optics Letters, 38, 784-786(2013).
[14] HUANG S, ZHU T, YIN G et al. Tens of hertz narrow-linewidth laser based on stimulated Brillouin and Rayleigh scattering[J]. Optics Letters, 42, 5286-5289(2017).
[15] RYBALTOVSKY A A, BUTOV O V, VASILIEV S A et al. Continuous-wave operation of an erbium-doped short-cavity composite fiber laser[J]. Results in Physics, 16, 102832(2020).
[16] GRAVEL J F Y, DOUCET F R, BOUCHARD P et al. Evaluation of a compact high power pulsed fiber laser source for laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 26, 1354-1361(2011).
[17] WRIGHT M W, FRANZEN D A, HEMMATI H et al. Qualification and reliability testing of a commercial high-power fiber-coupled semiconductor laser for space applications[J]. Optical Engineering, 44, 054204(2005).
[18] LI R, MADAMPOULOS N, ZHU Z et al. Performance comparison of an all-fiber-based laser Doppler vibrometer for remote acoustical signal detection using short and long coherence length lasers[J]. Applied Optics, 51, 5011-5018(2012).
[19] DANG L, HUANG L, CAO Y et al. Side mode suppression of SOA fiber hybrid laser based on distributed self-injection feedback[J]. Optics & Laser Technology, 147, 107619(2022).
[20] WANG Z, SHANG J, LI S et al. All-polarization maintaining single-longitudinal-mode fiber laser with ultra-high OSNR, sub-KHz linewidth and extremely high stability[J]. Optics & Laser Technology, 141, 107135(2021).
[21] LIU Y, ZHANG M, ZHANG J et al. Single-longitudinal-mode triple-ring Brillouin fiber laser with a saturable absorber ring resonator[J]. Journal of Lightwave Technology, 35, 1744-1749(2017).
[22] JIANG L, SHI L, LUO J et al. Narrow linewidth VCSEL based on resonant optical feedback from an on-chip microring add-drop filter[J]. Optics Letters, 46, 2320-2323(2021).
[23] VOO N Y, HORAK P, IBSEN M et al. Anomalous linewidth behavior in short-cavity single-frequency fiber lasers[J]. IEEE Photonics Technology Letters, 17, 546-548(2005).
[24] PETERMANN K. External optical feedback phenomena in semiconductor lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1, 480-489(1995).
[25] CENDEJAS R A, PHILLIPS M C, MYERS T L et al. Single-mode, narrow-linewidth external cavity quantum cascade laser through optical feedback from a partial-reflector[J]. Optics Express, 18, 26037-26045(2010).
[26] HAMELIN B, YANG J, DARUWALLA A et al. Monocrystalline silicon carbide disk resonators on phononic crystals with ultra-low dissipation bulk acoustic wave modes[J]. Scientific Reports, 9, 1-8(2019).
[27] CHEN H, ZHANG S, FU H et al. Sensing interrogation technique for fiber-optic interferometer type of sensors based on a single-passband RF filter[J]. Optics Express, 24, 2765-2773(2016).
[28] STACK D T, LEE P J, QURAISHI Q. Simple and efficient absorption filter for single photons from a cold atom quantum memory[J]. Optics Express, 23, 6822-6832(2015).
[29] DANG L, HUANG L, SHI L et al. Ultra-high spectral purity laser derived from weak external distributed perturbation[J]. Opto-Electronic Advances, 6, 210149(2023).
[30] LI F, IKECHUKWU I P, LAN T et al. Rayleigh scattering assisted ultra-narrow linewidth linear-cavity laser[J]. Applied Physics Express, 12, 082001(2019).
[31] DANG L, HUANG L, LI Y et al. A longitude-purification mechanism for tunable fiber laser based on distributed feedback[J]. Journal of Lightwave Technology, 40, 206-214(2022).
[32] MA W, XIONG B, SUN C et al. Linewidth narrowing of mutually injection locked semiconductor lasers with short and long delay[J]. Applied Sciences, 9, 1436(2019).
[33] KESSLER T, HAGEMANN C, GREBING C et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 6, 687-692(2012).
[34] SPIRIN V V, ESCOBEDO J L B, KOROBKO D A et al. Stabilizing DFB laser injection-locked to an external fiber-optic ring resonator[J]. Optics Express, 28, 478-484(2020).
[35] KESSLER T, HAGEMANN C, GREBING C et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 6, 687-692(2012).
[36] LEWOCZKO-ADAMCZYK W, PYRLIK C, HÄGER J et al. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity[J]. Optics Express, 23, 9705-9709(2015).
[37] KOMLJENOVIC T, SRINIVASAN S, NORBERG E et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 214-222(2015).
[38] SHEN Rensheng, ZHANG Yushu, DU Guotong. Latest development of fiber lasers[J]. Semiconductor Optoelectronics, 30, 1-5(2009).
[39] LANG Xingkai, JIA Peng, CHEN Yongyi等. Advances in narrow linewidth diode lasers[J]. SCIENTIA SINICA Informationis, 49, 649-662(2019).
[40] KOGELNIK H, SHANK C V. Stimulated emission in a periodic structure[J]. Applied Physics Letters, 18, 152-154(1971).
[41] NAKAMURA M, YARIV A, YEN H et al. Optically pumped GaAs surface laser with corrugation feedback[J]. Applied Physics Letters, 22, 515-516(1973).
[42] BELT M, HUFFMAN T, DAVENPORT M et al. Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform[J]. Optics Letters, 38, 4825-4828(2013).
[43] DUAN J, HUANG H, LU Z et al. Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers[J]. Applied Physics Letters, 112, 121102(2018).
[44] HUANG D, TRAN M, GUO J et al. Sub-kHz linewidth extended-DBR lasers heterogeneously integrated on silicon[C], 1-3(2019).
[45] SPIEGELBERG C, GENG J H, HU Y D et al. Low-noise narrow-linewidth fiber laser at 1550 nm[J]. Journal of Lightwave Technology, 22, 57-62(2004).
[46] YANG C, GUAN X, LIN W et al. Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser[J]. Optics Express, 25, 29078-29085(2017).
[47] WALASIK W, TRAORE D, AMAVIGAN A et al. 2 μm narrow linewidth all-fiber DFB fiber bragg grating lasers for Ho-and Tm-doped fiber-amplifier applications[J]. Journal of Lightwave Technology, 39, 5096-5102(2021).
[48] SUZUKI A, TAKAHASHI Y, YOSHIDA M et al. An ultralow noise and narrow linewidth λ/4-shifted DFB Er-Doped fiber laser with a ring cavity configuration[J]. IEEE Photonics Technology Letters, 19, 1463-1465(2007).
[49] COLLODO M C, SEDLMEIR F, SPRENGER B et al. Sub-kHz lasing of a CaF2 whispering gallery mode resonator stabilized fiber ring laser[J]. Optics Express, 22, 19277-19283(2014).
[50] ZHANG J, SHENG Q, ZHANG L et al. 2.56 W single-frequency all fiber oscillator at 1720 nm[J]. Advanced Photonics Research, 2100256(2021).
[51] FENG T, WEI D, BI W et al. Wavelength-switchable ultra-narrow linewidth fiber laser enabled by a figure-8 compound-ring-cavity filter and a polarization-managed four-channel filter[J]. Optics Express, 29, 31179-31200(2021).
[52] KANE T J, BYER R L. Solid-state non-planar internally reflecting ring laser[P].
[53] NILSSON A C, GUSTAFSON E K. Eigenpolarization theory of monolithic nonplanar ring oscillators[J]. IEEE Journal of Quantum Electronics, 25, 767-790(1989).
[54] WANG H, GAO M. High power single-frequency laser output from a diffusion-bonded monolithic nonplanar Ho: YAG ring oscillator[C], 11437, 1143703(2020).
[55] DENG W, YANG T, CAO J et al. High-efficiency 1064 nm nonplanar ring oscillator Nd: YAG laser with diode pumping at 885 nm[J]. Optics Letters, 43, 1562-1565(2018).
[56] SHIN D K, HENSON B M, KHAKIMOV R I et al. Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 1.0-1.1 µm[J]. Optics Express, 24, 27403-27414(2016).
[57] CHEN D, FANG Z, CAI H et al. Polarization characteristics of an external cavity diode laser with Littman–Metcalf configuration[J]. IEEE Photonics Technology Letters, 21, 984-986(2009).
[58] HIETA T, VAINIO M, MOSER C et al. External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range[J]. Optics Communications, 282, 3119-3123(2009).
[59] MCRAE T, LEE K, MCGOVERN M et al. Thermo-optic locking of a semiconductor laser to a microcavity resonance[J]. Optics Express, 17, 21977-21985(2009).
[60] STERN B, JI X C, DUTT A et al. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator[J]. Optics Letters, 42, 4541-4544(2017).
[61] XIANG C, MORTON P A, BOWERS J E. Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating[J]. Optics Letters, 44, 3825-3828(2019).
[62] WEI F, YANG F, ZHANG X et al. Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity[J]. Optics Express, 24, 17406-17415(2016).
[63] SCHUNK N, PETERMANN K. Noise analysis of injection-locked semiconductor injection lasers[J]. IEEE Journal of Quantum Electronics, 22, 642-650(1986).
[64] SCHUNK N, PETERMANN K. Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback[J]. IEEE Journal of Quantum Electronics, 24, 1242-1247(1988).
[65] YABRE G, DE W, VAN D et al. Noise characteristics of single-mode semiconductor lasers under external light injection[J]. IEEE Journal of Quantum Electronics, 36, 385-393(2000).
[66] LAU E K, WONG L J, WU M. Enhanced modulation characteristics of optical injection-locked lasers: a tutorial[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 618-633(2009).
[67] TRAN M, HUANG D, BOWERS J. Tutorial on narrow linewidth tunable semiconductor lasers using Si/Ⅲ-Ⅴ heterogeneous integration[J]. APL Photonics, 4, 111101(2019).
[68] ZHANG X, ZHU N H, XIE L et al. A stabilized and tunable single-frequency erbium-doped fiber ring laser employing external injection locking[J]. Journal of Lightwave Technology, 25, 1027-1033(2007).
[69] ZHANG Y N, ZHANG Y F, ZHAO Q L et al. Ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser[J]. Optics Express, 24, 26209(2016).
[70] ZHAO Q L, ZHANG Z T, WU B et al. Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection[J]. Photonics Research, 6, 326-331(2018).
[71] HAO L, WANG X, JIA K et al. Narrow-linewidth single-polarization fiber laser using non-polarization optics[J]. Optics Letters, 46, 3769-3772(2021).
[72] JI J, WANG H, MA J et al. Narrow linewidth self-injection locked fiber laser based on a crystalline resonator in add-drop configuration[J]. Optics Letters, 47, 1525-1528(2022).
[73] ZHENG S B. Jaynes-Cummings model with a collective atomic mode[J]. Physical Review A, 77, 045802(2008).
[74] ROMANELLI A. Generalized Jaynes-Cummings model as a quantum search algorithm[J]. Physical Review A, 80, 014302(2009).
[75] PEANO V, THORWART M. Quasienergy description of the driven Jaynes-Cummings model[J]. Physical Review B, 82, 155129(2010).
[76] CHEN Q H, LIU T, ZHANG Y Y et al. Exact solutions to the Jaynes-Cummings model without the rotating-wave approximation[J]. Europhysics Letters, 96, 14003(2011).
[77] LI F, LAN T, HUANG L et al. Spectrum evolution of Rayleigh backscattering in one-dimensional waveguide[J]. Opto-Electronic Advances, 2, 190012(2019).
[78] ZHU T, BAO X, CHEN L et al. Experimental study on stimulated Rayleigh scattering in optical fibers[J]. Optics Express, 18, 22958-22963(2010).
[79] ZHU T, BAO X, CHEN L. A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering[J]. Optics Communications, 285, 1371-1374(2012).
[80] WANG H, LU P, CHEN C et al. Stabilizing Brillouin random laser with photon localization by feedback of distributed random fiber grating array[J]. Optics Express, 30, 20712-20724(2022).
[81] DOSTOVALOV A V, WOLF A A, PARYGIN A V et al. Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule[J]. Optics Express, 24, 16232-16237(2016).
[82] SKVORTSOV M I, WOLF A A, DOSTOVALOV A V et al. Narrow-linewidth Er-doped fiber lasers with random distributed feedback provided by artificial Rayleigh scattering[J]. Journal of Lightwave Technology, 40, 1829-1835(2022).
[83] LEE H, CHEN T, LI J et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip[J]. Nature Photonics, 6, 369-373(2012).
[84] GAO R, YAO N, GUAN J et al. Lithium niobate microring with ultra-high Q factor above 10 8[J]. Chinese Optics Letters, 20, 011902(2022).
[85] ZHANG X, YIN Y, YIN X et al. Characterizing microring resonators using optical frequency domain reflectometry[J]. Optics Letters, 46, 2400-2403(2021).
[86] ZHU T, BAO X, CHEN L. A single longitudinal-mode tunable fiber ring laser based on stimulated Rayleigh scattering in a nonuniform optical fiber[J]. Journal of Lightwave Technology, 29, 1802-1807(2011).
[87] ZHU T, CHEN F Y, HUANG S H et al. An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber[J]. Laser Physics Letters, 10, 055110(2013).
[88] ZHU T, HUANG S, SHI L et al. Rayleigh backscattering: a method to highly compress laser linewidth[J]. Chinese Science Bulletin, 59, 4631-4636(2014).
[89] HUANG S, ZHU T, CAO Z et al. Laser linewidth measurement based on amplitude difference comparison of coherent envelope[J]. IEEE Photonics Technology Letters, 28, 759-762(2016).
[90] LI Y, HUANG L, GAO L et al. Optically controlled tunable ultra-narrow linewidth fiber laser with Rayleigh backscattering and saturable absorption ring[J]. Optics Express, 26, 26896-26906(2018).
[91] DANG L, HUANG L, CAO Y et al. Side mode suppression of SOA fiber hybrid laser based on distributed self-injection feedback[J]. Optics & Laser Technology, 147, 107619(2022).
[92] HUANG S, ZHU T, CAO Z et al. Laser linewidth measurement based on amplitude difference comparison of coherent envelope[J]. IEEE Photonics Technology Letters, 28, 759-762(2016).
[93] HUANG S, ZHU T, LIU M et al. Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope[J]. Scientific Reports, 7, 41988(2017).
[94] LIANG W, ILCHENKO V S, ELIYAHU D et al. Ultralow noise miniature external cavity semiconductor laser[J]. Nature Communications, 6, 1-6(2015).
[95] JIN W, YANG Q F, CHANG L et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators[J]. Nature Photonics, 15, 346-353(2021).
[96] LI Y, ZHANG Y, CHEN H et al. Tunable self-injected Fabry–Perot laser diode coupled to an external high-Q Si3N4/SiO2 microring resonator[J]. Journal of Lightwave Technology, 36, 3269-3274(2018).
[97] MINARDO A, BERNINI R, RUIZ-LOMBERA R et al. Proposal of Brillouin optical frequency-domain reflectometry (BOFDR)[J]. Optics Express, 24, 29994-30001(2016).
[98] WANG F, ZHU C, CAO C et al. Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding[J]. Optics Express, 25, 3504-3513(2017).
[99] AWWAD E, DORIZE C, GUERRIER S et al. Detection-localization-identification of vibrations over long distance SSMF with coherent Δφ-OTDR[J]. Journal of Lightwave Technology, 38, 3089-3095(2020).
[100] SEIMETZ M. Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation[C], 1-3(2008).
[101] LI S, ZHANG D, ZHAO J et al. Silicon micro-ring tunable laser for coherent optical communication[J]. Optics Express, 24, 6341-6349(2016).
[102] GUAN H, NOVACK A, GALFSKY T et al. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication[J]. Optics Express, 26, 7920-7933(2018).
[103] SHEN B, CHANG L, LIU J et al. Integrated turnkey soliton microcombs[J]. Nature, 582, 365-369(2020).
[104] SHU H, CHANG L, TAO Y et al. Microcomb-driven silicon photonic systems[J]. Nature, 605, 457-463(2022).
Get Citation
Copy Citation Text
Tao ZHU, Laiyang DANG, Jiali LI, Tianyi LAN, Ligang HUANG, Leilei SHI. Narrow Linewidth Laser Technology and Development(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851503
Category: Special Issue for the 60th Anniversary of XIOPM of CAS, and the 50th Anniversary of the Acta Photonica Sinica Ⅱ
Received: Jun. 12, 2022
Accepted: Jul. 14, 2022
Published Online: Oct. 25, 2022
The Author Email: