Optics and Precision Engineering, Volume. 21, Issue 9, 2231(2013)
Low-coherence measurement of glucose concentration in solution based on inverse Monte Carlo method
[1] [1] LARIN K V, MOTAMEDI M, ASHITKOV T V, et al.. Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study [J]. Phys. Med. Biol., 2003, 48(10): 1371-1390.
[2] [2] JOHN S M, SCOTT A W, SERGIO F, et al.. Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared[J]. Opt. Lett., 1994, 19(24): 2062-2064.
[3] [3] CHEN X D, GAO J, DING H Q. Infrared spectroscopy for non-invasive blood glucose monitoring(invited)[J]. Chin. Opt., 2012(4): 317-326. ( in Chinese)
[4] [4] CHEN C, LU J Q, DING H, et al.. A primary method for determination of optical parameters of turbid samples and application to Intralipid between 550 and 1 630 nm [J]. Opt. Express, 2006, 14(16): 7420-7435.
[5] [5] TYCHO A, JOGENSEN T M, YURA H T, et al.. Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems [J]. Appl. Opt., 2002, 41(31): 6676-6691.
[6] [6] JIANGHAI W, GUANGHUI W, YING C, et al.. Refractive index sensor using microfiber-based Mach-Zehnder interferometer Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units [J]. Opt. Lett., 2012, 37(1): 67-69.
[7] [7] TRUDE S, ARNE R, LARS O S, et al.. Measurement of dye diffusion in scattering tissue phantoms using dual-wavelength low-coherence interferometry [J]. J. Biomed. Opt., 2006, 11(1): 014017-1-9.
[8] [8] MIKHAIL Y K,ALEXANDER V P, MATTI K, et al.. Glucose sensing in aqueous intralipid suspension with an optical coherence tomography system: experiment and Monte Carlo simulation[J]. SPIE, 2004, 5325: 164-173.
[9] [9] DAVID L, LARS T, MICHAEL H F, et al.. Determination of optical scattering properties of highly-scattering media in optical coherence tomography images [J]. Opt. Express, 2004, 12(2): 250-259.
[10] [10] KINNUNEN M, MYLLYL R, JOKELA T, et al.. In vitro studies toward noninvasive glocuse monitoring with optical coherence tomography [J]. Appl. Opt., 2006, 45(10): 2251-2260.
[11] [11] XU Q SH, FENG SH, YE D T. Evaluation of non-invasive detection of blood glucose using OCT [J]. Opt. Precision Eng., 2010,18(2): 2688-2694. ( in Chinese)
[12] [12] HAYAKAWA C K, SPANIER J. Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues[J]. Opt. Lett., 2001, 26(17): 1335-1337.
[13] [13] WANG L H, JACQUES S L, ZHENG L Q. MCML-Monte Carlo modeling of photon transport in multi-layered tissues [J]. Comput. Methods Programs Biomed., 1995, 47(2): 131-146.
[14] [14] STAVEREN H J, MOES C J M, MARLE J. Light scattering in Intralipid-10% in the wavelength range of 400-1 100 nm[J]. Appl. Opt., 1991, 30(31): 4507-4514.
[15] [15] JOHN S M, SCOTT A W, SERGIO F, et al.. Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared [J]. Opt. Lett., 1994, 19(24): 2062-2064.
[16] [16] HULST H C. Light Scattering by Small Particles[M]. New York: Dover, 1981: 254.
Get Citation
Copy Citation Text
LIN Lin, ZHANG Mei. Low-coherence measurement of glucose concentration in solution based on inverse Monte Carlo method[J]. Optics and Precision Engineering, 2013, 21(9): 2231
Category:
Received: Apr. 10, 2013
Accepted: --
Published Online: Sep. 25, 2013
The Author Email: Lin LIN (lynwindsent@163.com)