Journal of Innovative Optical Health Sciences, Volume. 16, Issue 5, 2350002(2023)

Comparison of uniform resampling and nonuniform sampling direct-reconstruction methods in k-space for FD-OCT

Yanrong Yang1...4,5, Yun Dai1,4,5, Yuehua Zhou1,5, and Yaliang Yang23,* |Show fewer author(s)
Author Affiliations
  • 1College of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, P. R. China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, P. R. China
  • 3Key Laboratory of Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, P. R. China
  • 4Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Chengdu 610075, P. R. China
  • 5Ineye Hospital of Chengdu University of TCM, Chengdu 610075, P. R. China
  • show less
    References(40)

    [1] Numerical study on spectral domain optical coherence tomography spectral calibration and re-sampling importance. Photon. Sens., 3, 35-43(2013).

    [2] In vivo mice brain microcirculation monitoring based on contrast-enhanced SD-OCT. J. Innov. Opt. Health Sci., 12, 1950001(2019).

    [3] Three-dimensional imaging of spatio-temporal dynamics of small blood capillary network in the cortex based on optical coherence tomography: A review. J. Innov. Opt. Health Sci., 13, 2030002(2020).

    [4] Photodynamic therapy of brain tumors and novel optical coherence tomography strategies for in vivo monitoring of cerebral fluid dynamics. J. Innov. Opt. Health Sci., 13, 2030004(2020).

    [5] Enhanced medical diagnosis for doctors: A perspective of optical coherence tomography. J. Biomed. Opt., 26, 100601(2021).

    [6] In vivo imaging of human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography. Biomed. Opt. Exp., 11, 2849-2865(2020).

    [7] Swept-source OCT reduces the risk of axial length measurement errors in eyes with cataract and epiretinal membranes. PLOS ONE, 16, e0257654(2021).

    [8] Generalized image reconstruction in optical coherence tomography using redundant and non-uniformly-spaced samples. Sensors, 21, 1-14(2021).

    [9] Robust wavenumber and dispersion calibration for Fourier-domain optical coherence tomography. Opt. Exp., 26, 9081-9094(2018).

    [10] Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Exp., 11, 889-894(2003).

    [11] In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt., 7, 457-463(2002).

    [12] A new spectral calibration method for Fourier domain optical coherence tomography. Optik, 121, 965-970(2010).

    [13] Spectral calibration in spectral domain optical coherence tomography. Chin. Opt. Letts., 6, 902-904(2008).

    [14] Self-spectral calibration for spectral domain optical coherence tomography. Opt. Eng., 52, 063603-1-7(2013).

    [15] Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J. Biomed. Opt., 10, 044009-1-6(2005).

    [16] K-space linear Fourier domain mode locked laser and applications for optical coherence tomography. Opt. Exp., 16, 8916-8937(2008).

    [17] Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal. J. Biomed. Opt., 10, 064005(2005).

    [18] Ex vivo optical coherence tomography imaging of collector channels with a scanning endoscopic probe. Invest. Opth. Vis. Sci., 52, 3921-3925(2011).

    [19] Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography. Opt. Exp., 18, 9511-9517(2011).

    [20] Three-dimensional endomicroscopy using optical coherence tomography. Nat. Photon., 1, 709-716(2007).

    [21] Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination. J. Biomed. Opt., 12, 041205(2007).

    [22] A zero-crossing detection method applied to Doppler OCT. Opt. Exp., 16, 4394-4412(2008).

    [23] Spectral phase based k-domain interpolation for uniform sampling in swept-source optical coherence tomography. Opt. Exp., 19, 18430-18439(2011).

    [24] Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source. Opt. Commun., 246, 569-578(2005).

    [25] Investigation on spectral-domain optical coherence tomography using a tungsten halogen lamp as light source. Opt. Rev., 16, 26-29(2009).

    [26] Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling. Appl. Opt., 47, 687-693(2008).

    [27] Using nonequispaced fast Fourier transformation to process optical coherence tomography signals. Proc. SPIE 7372 on Optical Coherence Tomography and Coherence Techniques IV, 73720R1-6(2009).

    [28] Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci., 39, 447-462(1976).

    [29] Swept source optical coherence tomography based on nonuniform discrete Fourier transform. Chin. Opt. Lett., 7, 941-944(2009).

    [30] Constrained polynomial fit-based k-domain interpolation in swept-source optical coherence tomography. J. Innov. Opt. Health Sci., 14, 2140008(2021).

    [31] Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: Application to 4-D reconstruction of the chick embryonic heart. J. Biomed. Opt., 14, 044020-044011(2009).

    [32] Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography. Opt. Exp., 18, 10447-10461(2010).

    [33] Optical coherence tomography. Nat. Rev. Meth. Primers, 2, 79(2022).

    [34] . Numerical Recipes in Fortran(1992).

    [35] Time-domain interpolation for Fourier-domain optical coherence tomography. Opt. Lett., 34, 1849-1851(2009).

    [36] Selection of a convolution function for Fourier inversion using gridding computerised tomography application. IEEE Trans. Med. Imaging, 10, 473-478(1991).

    [37] Rapid gridding reconstruction with a minimal oversampling ratio. IEEE Trans. Med. Imaging, 24, 799-808(2005).

    [38] Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system. Opt. Exp., 17, 12121-12131(2009).

    [39] A full spectrum resampling method in polygon tunable laser-based swept-source optical coherence tomography. Acta. Phys. Sin., 66, 114204(2017).

    [40] Optimal processing sequence and method combination of linear resampling and spectral shaping in swept-source optical coherence tomography. Opt. Commun., 484, 126677(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yanrong Yang, Yun Dai, Yuehua Zhou, Yaliang Yang. Comparison of uniform resampling and nonuniform sampling direct-reconstruction methods in k-space for FD-OCT[J]. Journal of Innovative Optical Health Sciences, 2023, 16(5): 2350002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 25, 2022

    Accepted: Dec. 13, 2022

    Published Online: Sep. 26, 2023

    The Author Email: Yang Yaliang (ylyang@ioe.ac.cn)

    DOI:10.1142/S1793545823500025

    Topics