Chinese Journal of Quantum Electronics, Volume. 41, Issue 2, 194(2024)
Research progress and applications of fluoride magneto⁃optical crystals
[1] Huang J, Deng K. Theoretical challenges in research of atmospheric coherent laser communication[J]. Chinese Journal of Quantum Electronics, 37, 556-565(2020).
[2] Mironov E A, Zheleznov D S, Starobor A V et al. Large-aperture Faraday isolator based on a terbium gallium garnet crystal[J]. Optics Letters, 40, 2794-2797(2015).
[3] Zhang H T, Dou R Q, Zhang Q L et al. Research progress and applications of magneto-optical crystal[J]. Journal of Synthetic Crystals, 49, 346-357(2020).
[4] Long Y, Shi Z B, Ding Y C et al. Growth and characterization of large-size terbium gallium garnet single crystal[J]. Piezoelectrics & Acoustooptics, 38, 433-436(2016).
[5] Mironov E A, Palashov O V, Karimov D N. EuF2-based crystals as media for high-power mid-infrared Faraday isolators[J]. Scripta Materialia, 162, 54-57(2019).
[6] Cao Y H, Chen X Z, Cai M et al. Study on melt model with small aspect ratio of circular section in lateral heating[J]. Journal of Synthetic Crystals, 2, 65-70(1983).
[7] Long Y, Xu Y, Shi Z B et al. Study on spiral growth of TGG crystal[J]. Piezoelectrics & Acoustooptics, 37, 277-279(2015).
[8] Zhang H T, Gao Y X, Huang C B et al. Electronic structure, optical dispersion and luminescence properties of terbium gallium garnet crystal[J]. CrystEngComm, 24, 877-885(2022).
[9] Geho M, Sekijima T, Fujii T. Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine[J]. Journal of Crystal Growth, 267, 188-193(2004).
[10] Geho M, Sekijima T, Fujii T. Growth mechanism of incongruently melting terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by laser FZ method[J]. Journal of Crystal Growth, 275, e663-e667(2005).
[11] Mironov E A, Palashov O V. Faraday isolator based on TSAG crystal for high power lasers[J]. Optics Express, 22, 23226-23230(2014).
[12] Dou R Q, Zhang H T, Zhang Q L et al. Growth and properties of TSAG and TSLAG magneto-optical crystals with large size[J]. Optical Materials, 96, 109272(2019).
[13] Ding S J, Zhang Q L, Liu W P et al. Crystal growth, defects, mechanical, thermal and optical properties of Tb3Sc2Al3O12 magneto-optical crystal[J]. Journal of Crystal Growth, 483, 110-114(2018).
[14] Snetkov I L, Yasuhara R, Starobor A V et al. Thermo-optical and magneto-optical characteristics of terbium scandium aluminum garnet crystals[J]. IEEE Journal of Quantum Electronics, 51, 7000307(2015).
[15] Zhao Y Y. Growth and Performance Research of YIG Magneto-optical Crystal[D](2016).
[16] Zhang G Y, Xia T, Cheng Y et al. Role of exchange interaction in the magnetic and magneto-optic properties of CeF3 crystal[J]. Acta Physica Sinica, 55, 3091-3094(2006).
[17] Liu G Q, Yue Z Q, Shen D F[M]. Magnetooptics(2001).
[18] Man P W. Crystal Growth and Magneto-optical Property of Terbium Based Garnet Structure Magneto-optical Crystal[D](2017).
[20] Slezák O, Yasuhara R, Lucianetti A et al. Temperature-wavelength dependence of terbium gallium garnet ceramics Verdet constant[J]. Optical Materials Express, 6, 3683-3691(2016).
[21] Chen H, Chen Y B, He Y X et al. Relationship between Faraday effect and incident light[J]. Physics Experimentation, 37, 16-20(2017).
[22] Molina P, Vasyliev V, Víllora E G et al. CeF3 and PrF3 as UV-visible Faraday rotators[J]. Optics Express, 19, 11786-11791(2011).
[24] Van Vleck J H, Hebb M H. On the paramagnetic rotation of tysonite[J]. Physical Review, 46, 17-32(1934).
[25] Ruan M. Growth and Performance of Scheelite Na2Tb4(MoO4)7 and Fluorite Tb6MoO12 Magneto-optical Crystals[D](2014).
[26] Li H F. Study on the Growth and Performance of CeF3 Magneto-optical Crystal[D](2021).
[27] Petrovskii G T, Edelman I S, Zarubina T V et al. Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region[J]. Journal of Non-Crystalline Solids, 130, 35-40(1991).
[28] Yang Y L, Zhang L H, Li S M et al. Crystal growth and 570 nm emission of Dy3+ doped CeF3 single crystal[J]. Journal of Luminescence, 215, 116707(2019).
[29] Piotrowski M, Ptasiewicz-bąk H, Murasik A. The crystal structures of HoF3 and TbF3 by neutron diffraction[J]. Physica Status Solidi (a)-Applied Research, 55, K163-K166(1979).
[30] Walker P J. Melt growth of rare-earth binary and complex halides[J]. Progress in Crystal Growth and Characterization, 3, 103-119(1980).
[31] Valiev U V, Karimov D N, Burdick G W et al. Growth and magnetooptical properties of anisotropic TbF3 single crystals[J]. Journal of Applied Physics, 121, 243105(2017).
[32] Starobor A V, Mironov E A, Palashov O V et al. Dispersion of optical and magneto-optical properties in a biaxial TbF3 crystal[J]. Laser Physics Letters, 18, 115801(2021).
[33] Shimamura K, Villora E G, Nakakita S et al. Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals[J]. Journal of Crystal Growth, 264, 208-215(2004).
[34] Vasyliev V, Villora E G, Nakamura M et al. UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE = Tb, Dy, Ho, Er and Yb), PrF3 and CeF3[J]. Optics Express, 20, 14460-14470(2012).
[35] Jiang G C, Zhang Z, Li H F et al. TGT growth and magneto-optical properties of PrF3 crystal[J]. Physica B: Condensed Matter, 614, 413031(2021).
[36] Laiho R, Lakkisto M. Investigation of the refractive indices of LaF3, CeF3, PrF3 and NdF3[J]. Philosophical Magazine B, 48, 203-207(1983).
[37] Anderson D F. Properties of the high-density scintillator cerium fluoride[J]. IEEE Transactions on Nuclear Science, 36, 137-140(1989).
[38] Moses W W, Derenzo S E. Cerium fluoride, a new fast, heavy scintillator[J]. IEEE Transactions on Nuclear Science, 36, 173-176(1989).
[39] Lecoq P. Progress on scintillator research by the crystal clear collaboration[J]. MRS Online Proceedings Library, 348, 51-64(1994).
[40] Nikl M, Mares J A, Dusek M et al. Decay kinetics of Ce3+ ions under gamma and KrF excimer laser excitation in CeF3 single crystals[J]. Journal of Physics: Condensed Matter, 7, 6355-6364(1995).
[42] Víllora E G, Shimamura K, Plaza G R. Ultraviolet-visible optical isolators based on CeF3 Faraday rotator[J]. Journal of Applied Physics, 117, 233101(2015).
[43] Mironov E A, Starobor A V, Snetkov I L et al. Thermo-optical and magneto-optical characteristics of CeF3 crystal[J]. Optical Materials, 69, 196-201(2017).
[44] Vojna D, Yasuhara R, Slezák O et al. Verdet constant dispersion of CeF3 in the visible and near-infrared spectral range[J]. Optical Engineering, 56, 067105(2017).
[45] Starobor A, Mironov E, Palashov O. High-power faraday isolator on a uniaxial CeF3 crystal[J]. Optics Letters, 44, 1297-1299(2019).
[46] Zhao G, Zhao C C, Yang Y L et al. Magneto-optical performances of novel neodymium-doped CeF3 crystal[J]. Materials Letters, 300, 130134(2021).
[47] Karimov D N, Lisovenko D S, Ivanova A G et al. Bridgman growth and physical properties anisotropy of CeF3 single crystals[J]. Crystals, 11, 793(2021).
[48] Adachi G Y, Nishihata T, Uchiyama K et al. New preparation method of europium difluoride[J]. Chemistry Letters, 5, 189-190(1976).
[49] Freiser M J, Methfessel S, Holtzberg F. Multiplet structure in the absorption spectrum of Eu2+[J]. Journal of Applied Physics, 39, 900-902(1968).
[50] Carnall W T, Fields P R, Rajnak K. Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+[J]. The Journal of Chemical Physics, 49, 4450-4455(1968).
[51] Mironov E A, Volkov M R, Palashov O V et al. Thermo-optical properties of EuF2-based crystals[J]. Applied Physics Letters, 114, 073506(2019).
[52] Weber M J, Morgret R, Leung S Y et al. Magneto-optical properties of KTb3F10 and LiTbF4 crystals[J]. Journal of Applied Physics, 49, 3464-3469(1978).
[53] Griffin J A, Folkins J, Weber M J et al. Magnetic, optical, and magneto-optical behavior of LiTbF4 and KTb3F10 crystals[J]. Journal of Applied Physics, 49, 2209-2211(1978).
[54] Stevens K T, Schlichting W, Foundos G et al. Promising materials for high power laser isolators[J]. Laser Technik Journal, 13, 18-21(2016).
[55] Karimov D N, Buchinskaya I I. Growth of KR3F10 (R = Tb-Er) crystals by the vertical directional crystallization technique. I: Optimization of the melt composition for the growth of KTb3F10 and correction of the phase diagram of the KF-TbF3 system[J]. Crystallography Reports, 66, 535-540(2021).
[56] Jalali A A, Rogers E, Stevens K. Characterization and extinction measurement of potassium terbium fluoride single crystal for high laser power applications[J]. Optics Letters, 42, 899-902(2017).
[57] Starobor A V, Mironov E A, Palashov O V. Thermal lens in magneto-active fluoride crystals[J]. Optical Materials, 98, 109469(2019).
[58] Karimov D N, Buchinskaya I I, Arkharova N A et al. Growth peculiarities and properties of KR3F10 (R = Y, Tb) single crystals[J]. Crystals, 11, 285(2021).
[59] Karimov D N, Sobolev B P, Ivanov I A et al. Growth and magneto-optical properties of Na0.37Tb0.63F2.26 cubic single crystal[J]. Crystallography Reports, 59, 718-723(2014).
[60] Mironov E A, Palashov O V, Voitovich A V et al. Investigation of thermo-optical characteristics of magneto-active crystal Na037Tb063F226[J]. Optics Letters, 40, 4919-4922(2015).
Get Citation
Copy Citation Text
Zhen WU, Zhonghan ZHANG, Zhen ZHANG, Shengyao ZHOU, Liangbi SU, Anhua WU. Research progress and applications of fluoride magneto⁃optical crystals[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 194
Category:
Received: May. 11, 2022
Accepted: --
Published Online: Jun. 24, 2024
The Author Email: