Optics and Precision Engineering, Volume. 30, Issue 13, 1620(2022)
Relocation non-maximum suppression algorithm
[1] X W WU, D SAHOO, S C H HOI. Recent advances in deep learning for object detection. Neurocomputing, 396, 39-64(2020).
[2] Y N SUN, B XUE, M J ZHANG et al. Automatically designing CNN architectures using the genetic algorithm for image classification. IEEE Transactions on Cybernetics, 50, 3840-3854(2020).
[3] Y LIU, Y H WU, P S WEN et al. Leveraging instance-, image- and dataset-level information for weakly supervised instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 1415-1428(2022).
[4] Q M CHENG, Q ZHANG, P FU et al. A survey and analysis on automatic image annotation. Pattern Recognition, 79, 242-259(2018).
[5] G CIAPARRONE, F LUQUE SÁNCHEZ, S TABIK et al. Deep learning in video multi-object tracking: a survey. Neurocomputing, 381, 61-88(2020).
[6] R GIRSHICK, J DONAHUE, T DARRELL et al. Rich feature hierarchies for accurate object detection and semantic segmentation. OH, 580-587(2014).
[7] A KRIZHEVSKY, I SUTSKEVER, G E HINTON. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60, 84-90(2017).
[8] S H WAN, S GOUDOS. Faster R-CNN for multi-class fruit detection using a robotic vision system. Computer Networks, 168, 107036(2020).
[9] N WANG, Y GAO, H CHEN et al. NAS-FCOS: efficient search for object detection architectures. International Journal of Computer Vision, 129, 3299-3312(2021).
[10] [10] 10王建林, 付雪松, 黄展超, 等. 改进YOLOv2卷积神经网络的多类型合作目标检测[J]. 光学 精密工程, 2020, 28(1): 251-260. doi: 10.3788/ope.20202801.0251WANGJ L, FUX S, HUANGZH CH, et al. Multi-type cooperative targets detection using improved YOLOv2 convolutional neural network[J]. Optics and Precision Engineering, 2020, 28(1): 251-260.(in Chinese). doi: 10.3788/ope.20202801.0251
[11] [11] 11鞠默然, 罗海波, 刘广琦, 等. 采用空间注意力机制的红外弱小目标检测网络[J]. 光学 精密工程, 2021, 29(4): 843-853. doi: 10.37188/OPE.20212904.0843JUM R, LUOH B, LIUG Q, et al. Infrared dim and small target detection network based on spatial attention mechanism[J]. Optics and Precision Engineering, 2021, 29(4): 843-853.(in Chinese). doi: 10.37188/OPE.20212904.0843
[12] [12] 12马立, 巩笑天, 欧阳航空. Tiny YOLOV3目标检测改进[J]. 光学 精密工程, 2020, 28(4): 988-995.MAL, GONGX T, OUYANGH K. Improvement of Tiny YOLOV3 target detection[J]. Optics and Precision Engineering, 2020, 28(4): 988-995.(in Chinese)
[13] A NEUBECK, GOOL LVAN. Efficient non-maximum suppression, 850-855(2006).
[14] S H QIU, G J WEN, Z P DENG et al. Accurate non-maximum suppression for object detection in high-resolution remote sensing images. Remote Sensing Letters, 9, 237-246(2018).
[15] Y H HE, C C ZHU, J R WANG et al. Bounding box regression with uncertainty for accurate object detection, 2883-2892(2019).
[16] W C MA, K D LI, G H WANG. Location-aware box reasoning for anchor-based single-shot object detection. IEEE Access, 129300-129309(8).
[17] B Jiang, R Luo, J Mao et al. Acquisition of Localization Confidence for Accurate Object Detection, 784-799(2018).
[18] J X ZENG, J L XIONG, X FU et al. ReFPN-FCOS: one-stage object detection for feature learning and accurate localization. IEEE Access, 225052-225063(8).
[19] S T LIU, D HUANG, Y H WANG. Adaptive NMS: refining pedestrian detection in a crowd, 6452-6461(2019).
[20] Z H ZHENG, P WANG, W LIU et al. Distance-IoU loss: faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12993-13000(2020).
[21] N BODLA, B SINGH, R CHELLAPPA et al. Soft-NMS-improving object detection with one line of code, 5562-5570(2017).
Get Citation
Copy Citation Text
Shuzhi SU, Runbin CHEN, Yanmin ZHU, Bowen JIANG. Relocation non-maximum suppression algorithm[J]. Optics and Precision Engineering, 2022, 30(13): 1620
Category: Information Sciences
Received: Dec. 24, 2021
Accepted: --
Published Online: Jul. 27, 2022
The Author Email: SU Shuzhi (sushuzhi@foxmail.com)