Acta Physica Sinica, Volume. 69, Issue 16, 164401-1(2020)

Numerical simulation of natural convection of nanofluids in an inclined square porous enclosure by lattice Boltzmann method

Bei-Hao Zhang and Lin Zheng*
Author Affiliations
  • School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    Figures & Tables(17)
    Schematic diagram of the physical model.
    Streamlines, isotherms contours for different : (a) = 0.3; (b) = 0.5; (c) = 0.7; (d) = 0.9.
    (a) Vertical velocity distribution at X = 0; (b) horizontal velocity distribution at Y = 1 for different.
    (a) At the heated wall Nuave number; (b) local Nu number for different .
    Streamlines, isotherms contours for different Ra number: (a) Ra = 103; (b) Ra = 104; (c) Ra = 105; (d) Ra = 106.
    (a) Vertical velocity distribution at X = 0; (b) horizontal velocity distribution at Y = 1 for different .
    (a) At the heated wall Nuave number; (b) local Nu number for different Ra.
    Streamlines, isotherms contours for different γ number: (a) γ = 0°; (b) γ = 40°; (c) γ = 80°; (d) γ = 120°.
    (a) Local temperature distribution along the Y = 0.5; (b) average velocity in the y direction & Nuave number at the heated wall in different γ.
    (a) Local velocity in the y direction; (b) local Nuave number at the heated wall in different γ.
    (a) Variation of Nuave number as a function of in different γ at the heated wall; (b) when γ = 0°, 40°, variation of local Nu number at the heated wall in different .
    (a) Variation of Nuave number as a function of ϕ in different γ at the heated wall; (b) when γ = 0°, 40°, variation of local Nu number at the heated wall in different ϕ.
    • Table 1.

      Thermophysical properties of water, Al2O3 and glass fibers.

      H2O, Al2O3和玻璃纤维的热物理性质

      View table
      View in Article

      Table 1.

      Thermophysical properties of water, Al2O3 and glass fibers.

      H2O, Al2O3和玻璃纤维的热物理性质

      物性参数H2O Al2O3Glass fiber[23,24]
      ρ/kg·m–3997.13971650
      Cp/J·kg–1·K–14179765750
      k/W·m–1·K–10.613251.2
      β/K–121 × 10–51.89 × 10–5
      ds/nm 47
    • Table 2.

      Calculation formula for thermodynamic properties of nanofluids.

      纳米流体的热物性参数计算公式

      View table
      View in Article

      Table 2.

      Calculation formula for thermodynamic properties of nanofluids.

      纳米流体的热物性参数计算公式

      热物性参数计算表达式
      纳米流体粘度$\mu {}_{nf} = \dfrac{{{\mu _f}}}{{{{\left( {1 - \phi } \right)}^{2.5}}}}$
      纳米流体密度${\rho _{nf}} = \left( {1 - \phi } \right){\rho _f} + \phi {\rho _s}$
      纳米流体热容${\left( {\rho {C_p}} \right)_{nf}} = \left( {1 - \phi } \right){\left( {\rho {C_p}} \right)_f} + \phi {\left( {\rho {C_p}} \right)_s}$
      纳米流体热扩散系数${\alpha _{nf}} = \dfrac{{{k_{nf}}}}{{{{\left( {\rho {C_p}} \right)}_{nf}}}}$
      纳米流体热膨胀系数${\left( {\rho \beta } \right)_{nf}} = \left( {1 - \phi } \right){\left( {\rho \beta } \right)_f} + \phi {\left( {\rho \beta } \right)_s}$
      纳米流体导热系数${k_{nf}} = \dfrac{{{k_p} + 2{k_f} - 2\left( {{k_f} - {k_p}} \right)\phi }}{{{k_p} + 2{k_f} + 2\left( {{k_f} - {k_p}} \right)\phi }}{k_f}$
      多孔介质有效 导热系数 ${k_m} = \left( {1 - \epsilon} \right){k_p} + {\epsilon k_{nf}}$
    • Table 3. Comparison of Nuave number with literature[33] in different grids number.

      View table
      View in Article

      Table 3. Comparison of Nuave number with literature[33] in different grids number.

      不同网格数下的Nuave
      80 × 80100 × 100120 × 120140 × 140
      Nuave8.5288.6708.7448.785
      误差/%3.39%1.70%0.83%0.36%
    • Table 4. Comparison of Nuave number with previous literature[33].

      View table
      View in Article

      Table 4. Comparison of Nuave number with previous literature[33].

      Ra文献[27] 本文结果误差/%
      1031.1161.1230.63
      1042.2382.2661.25
      1054.5094.5561.04
      1068.8178.7440.83
    • Table 5. Comparison of Nuave number with previous literature[34].

      View table
      View in Article

      Table 5. Comparison of Nuave number with previous literature[34].

      NO.DaRa文献[34] 本文结果误差/%
      110–21041.5301.4972.16
      210–21053.5553.4413.09
      310–25 × 1055.7405.6940.87
    Tools

    Get Citation

    Copy Citation Text

    Bei-Hao Zhang, Lin Zheng. Numerical simulation of natural convection of nanofluids in an inclined square porous enclosure by lattice Boltzmann method[J]. Acta Physica Sinica, 2020, 69(16): 164401-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 28, 2020

    Accepted: --

    Published Online: Jan. 4, 2021

    The Author Email:

    DOI:10.7498/aps.69.20200308

    Topics