Journal of Innovative Optical Health Sciences, Volume. 2, Issue 1, 9(2009)
NON-LINEAR OPTICAL IMAGING OF OBESITY-RELATED HEALTH RISKS: REVIEW
[1] [1] Calle, E. E. and Kaaks, R., “Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms,” Nat. Rev. Cancer 4(8), 579–591 (2004).
[2] [2] Kopelman, P. G., “Obesity as a medical problem,” Nature 404, 635–643 (2000).
[3] [3] Marx, J., “Unraveling the causes of diabetes,” Science 296, 686–689 (2002).
[4] [4] Rosen, E. D. and Spiegelman, B. M., “Adipocytes as regulators of energy balance and glucose homeostasis,” Nature 444, 847–853 (2006).
[5] [5] Ahima, R. S. and Flier, J. S., “Adipose tissue as an endocrine organ,” Trends Endocrinol. Metab. 11, 327–332 (2000).
[6] [6] Despres, J. P. and Lemieux, I., “Abdominal obesity and metabolic syndrome,” Nature 444, 881– 887 (2006).
[7] [7] Evans, C. L. and Xie, X. S., “Coherent anti-Stokes Raman scattering microscopy: Chemically selective imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[8] [8] Yeo, G. S., Connie, Hung, C. C., Rochford, J., Keogh, J., Gray, J., Sivaramakrishnan, S., O’Rahilly, S. and Farooqi, I. S., “A de novo mutation affecting human TrkB associated with severe obesity and developmental delay,” Nat. Neurosci. 7, 1187–1189 (2004).
[9] [9] Olden, K. and Wilson, S., “Environmental health and genomics: Visions and implications,” Nat. Rev. Genet. 1, 149–153 (2000).
[10] [10] Perusse, L. and Bouchard, C., “Role of genetic factors in childhood obesity and in susceptibility to dietary variations,” Ann. Med. 31, 19–25 (1999).
[11] [11] Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., Heine-Su ner, D., Ciqudosa, J. C., Urioste, M., Benitez, J., Boix-Chornet, M., Sanchez-Aquilera, A., Ling, C., Carlsson, E., Poulsen, P., Vaag, A., Stephan, Z., Spector, T. D., Wu, Y. Z., Plass, C. and Esteller, M., “Epigenetic differences arise during the lifetime of monozygotic twins,” Proc. Natl. Acad. Sci. USA 102, 10604– 10609 (2005).
[12] [12] Cheng, J. X. and Xie, X. S., “Coherent anti- Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827–840 (2004).
[13] [13] Cheng, J. X., “Coherent anti-Stokes Raman Scattering microscopy,” Appl. Spectrosc. 61, 197–208 (2007).
[14] [14] Helmchen, F. and Denk, W., “Deep tissue twophoton microscopy,” Nat. Methods. 2, 932–940 (2005).
[15] [15] Zipfel, W. R., Williams, R. M., Christie, R., Nikitin, A. Y., Hyman, B. T. and Webb, W. W., “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
[16] [16] Sturek, M., Alloosh, M., Wenzel, J., Byrd, J. P., Edwards, J. M., Loyd, P. G., Tune, J. D., March, K. L., Miller, M. A., Mokelke, E. A. and Brisbin, I. L. Jr., “Ossabaw island miniature swine: cardiometabolic syndrome assessment,” in M. M. Swindle (ed.), Swine in the Laboratory: Surgery, Anesthesia, Imaging, and Experimental Techniques, 2nd edition (CRC Press, Boca Raton, 2007), pp. 397–402.
[17] [17] Dyson, M. C., Alloosh, M., Vuchetich, J. P., Mokelke E. A. and Sturek M., “Components of metabolic syndrome and coronary artery disease in female Ossabaw swine fed excess atherogenic diet,” Comp. Med. 56, 35–45 (2006).
[18] [18] Rosen, E. D. and MacDougald, O. A., “Adipocyte differentiation from the inside out,” Nat. Rev. Mol. Cell. Biol. 7, 885–896 (2006).
[19] [19] Green, H. and Kehinde, O., “Sublines of mouse 3T3 cells that accumulate lipid,” Cell 1, 113–116 (1974).
[20] [20] Lee, Y. H., Chen, S. Y., Wiesner, R. J. and Huang, Y. F., “Simple flow cytometric method used to assess lipid accumulation in fat cells,” J. Lipid. Res. 45, 1162–1167 (2004).
[21] [21] Nan, X. L., Cheng, J. X. and Xie, X. S., “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid. Res. 44, 2202–2208 (2003).
[22] [22] Nan, X. L., Potma, E. O. and Xie, X. S., “Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-stokes Raman scattering microscopy,” Biophys. J. 91, 728–735 (2006).
[23] [23] Yamaguchi, T., Omatsu, N., Morimoto, E., Nakashima, H., Ueno, K., Tanaka, T., Satouchi, K., Hirose, F. and Osumi, T., “CGI-58 facilitates lipolysis on lipid droplets but is not involved in the vesiculation of lipid droplets caused by hormonal stimulation,” J. Lipid. Res. 48, 1078–1089 (2007).
[24] [24] Fujimoto, T., Ohsaki, Y., Cheng, J., Suzuki,M. and Shinohara, Y., “Lipid droplets: A classic organelle with new outfits,” Histochem. Cell Biol. 130, 263– 279 (2008).
[25] [25] Debarre, D., Supato, W., Pena, A. M., Fabre, A., Tordjmann, T., Combettes, L., Schanne-Klein, M. C. and Beaurepaire, E., “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2006).
[26] [26] Cheng, J. X., Volkmer, A., Book, L. D. and Xie, X. S., “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[27] [27] Muller, M. and Schins, J. M., “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106, 3715– 3723 (2002).
[28] [28] Li, L., Wang,H. F. andCheng, J. X., “Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains,” Biophys. J. 89, 3480–3490 (2005).
[29] [29] Burkacky, O., Zumbusch, A., Brackmann, C. and Enejder, A., “Dual-pump coherent anti-Stokes- Raman scattering microscopy,” Opt. Lett. 31, 3656–3658 (2006).
[30] [30] Rinia, H. A., Burger, K. N. J., Bonn, M. and Muller, M., “Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy,” Biophys. J. 95, 4908–4918 (2008).
[31] [31] Evans, C. L., Potma, E. O., Pouris’haag, M., C ot′e, D., Lin, P. C. and Xie, X. S., “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[32] [32] Huff, T. B. and Cheng, J. X., “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc. 225, 175–182 (2007).
[33] [33] Guo, Y., Walther, T. C., Rao, M., Stuurman, N., Goshima, G., Terayama, K., Wong, J. S., Vale, R. D., Walter, P. and Farese, R. V., “Functional genomic screen reveals genes involved in lipiddroplet formation and utilization,” Nature 453, 657–661 (2008).
[34] [34] Zhang, J., Campbell, R. E., Ting, A. Y. and Tsien, R. Y., “Creating new fluorescent probes for cell biology,” Nat. Rev. Mol. Cell. Biol. 3, 906–918 (2002).
[35] [35] Shaner, N. C., Steinbach, P. A. and Tsien, R. Y., “A guide to choosing fluorescent proteins,” Nat. Methods 2, 905–909 (2005).
[36] [36] Yao, J., Munson, K. M., Webb, W. W. and Lis, J. T., “Dynamics of heat shock factor association with native gene loci in living cells,” Nature 442, 1050–1053 (2006).
[37] [37] Le, T. T., Harlepp, S., Guet, C. C., Dittmar, K., Emonet, T., Pan, T. and Cluzel, P., “Realtime RNA profiling within a single bacterium,” Proc. Natl. Acad. Sci. USA 102, 9160–9164 (2005).
[38] [38] Jares-Erijman, E. A. and Jovin, T. M., “FRET imaging,” Nat. Biotechnol. 21, 1387–1395 (2003).
[39] [39] Haustein, E. and Schwille, P., “Fluorescence correlation spectroscopy: Novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36, 151–169 (2007).
[40] [40] Martin, S. and Parton, R. G., “Lipid droplets: A unified view of a dynamic organelle,” Nat. Rev. Mol. Cell. Biol. 7, 373–378 (2006).
[41] [41] Fukumura, D. et al., “Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis,” Circ. Res. 93, 88–97 (2003).
[42] [42] Brown, E. B., Campbell, R. B., Tsuzuki, Y., Xu, L., Carmeliet, P., Fukumura, D. and Jain, R. K., “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med. 7, 864–868 (2001).
[43] [43] Alexandrakis, G., Brown, E. B., Tang, R. T., Mckee, T. D., Campbell, R. B., Boucher, Y. and Jain R. K., “Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors,” Nat. Med. 10, 203–207 (2004).
[44] [44] Kadereit, B., Kumar, P., Wang, W. J., Miranda, D., Snapp, E. L., Severina, N., Torregroza, I., Evans, T. and Silver, D. L., “Evolutionarily conserved gene family important for fat storage,” Proc. Natl. Acad. Sci. USA 105, 94–99 (2008).
[45] [45] Kaletta, T. and Hengartner, M. O., “Finding function in novel targets: C-elegans as a model organism,” Nat. Rev. Drug Discovery 5, 387–398 (2006).
[46] [46] Reinke, V. and White, K. P., “Developmental genomic approaches in model organisms,” Annu. Rev. Genomics Hum. Genet. 3, 153–178 (2002).
[47] [47] Zon, L. I. and Peterson, R. T., “In vivo drug discovery in the zebrafish,” Nat. Rev. Drug Discovery 4, 35–44 (2005).
[48] [48] Stoletov, K., Montel, V., Lester, R. D., Gonias, S. L. and Klemke, R., “High-resolution imaging of the dynamic tumor cell-vascular interface in transparent zebrafish,” Proc. Natl. Acad. Sci. USA 104, 17406–17411 (2007).
[49] [49] Hellerer, T., A¨xang, C., Brackmann, C., Hillertz, P., Pilon, M. and Enejder, A., “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 104, 14658–14663 (2007).
[50] [50] Lorincz, A. M. and Sukumar, S., Molecular links between obesity and breast cancer,” Endocr. Relat. Cancer. 13, 279–292 (2006).
[51] [51] Iyengar, P., Combs, T. P., Shah, S. J., Gauon- Evans, V., Pollard, J. W., Albanese, C., Flanagan, L., Tenniswood, M. P., Guha, C., Lisanti, M. P., Pestell, R. G. and Scherer, P. E., “Adipocytesecreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization,” Oncogene 22, 6408–6423 (2003).
[52] [52] Hanahan, D. and Weinberg, R. A., “The hallmarks of cancer,” Cell 100, 57–70 (2000).
[53] [53] Bissell, M. J. and Radisky, D., “Putting tumours in context,” Nat. Rev. Cancer 1, 46–54 (2001).
[54] [54] Tlsty, T. D. and Coussens, L. M., “Tumor stroma and regulation of cancer development,” Annu. Rev. Pathol. Mech. Dis. 1, 119–150 (2006).
[55] [55] Kalluri, R. and Zeisberg, M., “Fibroblasts in cancer,” Nat. Rev. Cancer 6, 392–401 (2006).
[56] [56] Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks,M. W., Richardson, A. L., Polyak, K., Tubo, R. andWeinberg, R. A., “Mesenchymal stem cells within tumour stroma promote breast cancer metastasis,” Nature 449, 557–563 (2007).
[57] [57] Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, Y. F., Goswami, S., Stanley, E. R., Segall, J. E., Pollard, J. W. and Candeelis, J., “Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors,” Cancer Res. 67, 2649–2656 (2007).
[58] [58] Provenzano, P. P., Eliceiri, K.W., Campbell, J. M., Inman, D. R., White, J. G. and Keely, P. J., “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[59] [59] Jain, R. K., di Tomaso, E., Duda, D. G., Loeffler, J. S., Sorensen, A. G. and Batchelor, T. T., “Angiogenesis in brain tumours,” Nat. Rev. Neurosci. 8, 610–622 (2007).
[60] [60] Fukumura, D., Xavier, R., Sugiura, T., Chen, Y., Park, E. C., Lu, N., Selig, M., Nielsen, G., Taksir, T., Jain, R. K. and Seed, B., “Tumor induction of VEGF promoter activity in stromal cells,” Cell 94, 715–725 (1998).
[61] [61] Le, T. T., Rehrer, C. W., Huff, T. B., Nichols, M. B., Camarillo, I. G. and Chen, J. X., “Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma,” Mol. Imaging 6, 205–211 (2007).
[62] [62] Thordarson, G., Lee, A. V., McCarty, M., Van Horn, K., Chu, O., Chou, Y. C., Yang, J., Guzman, R. C., Nandi, S. and Talamantes, F., “Growth and characterization of N-methyl-Nnitrosourea- induced mammary tumors in intact and ovariectomized rats,” Carcinogenesis 22, 2039– 2048 (2001).
[63] [63] Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Knittel, J. G., Yan, L., Rueden, C. T., White, J. G. and Keely, P. J., “Collagen density promotes mammary tumor initiation and progression,” BMC Med. 6, 11 (2008).
[64] [64] Fouser, L., Iruelaarispe, L., Bornstein, P. and Sage, E. H., “Transcriptional activity of the α-1(I)- collagen promoter is correlated with the formation of capillary-like structures by endothelial cells in vitro,” J. Biol. Chem. 266, 18345–18351 (1991).
[65] [65] Ahmed, F., Wyckoff, J., Lin, E. Y., Wang, W., Wing, Y., Hennighausen, L., Miyazaki, J., Jones, J., Pollard, J.W., Condeelis, J. S. and Segall, J. E., “GFP expression in the mammary gland for imaging of mammary tumor cells in transgenic mice,” Cancer Res. 62, 7166–7169 (2002).
[66] [66] Dailey, M. E. and Waite, M., “Confocal imaging of microglial cell dynamics in hippocampal slice cultures,” Methods 18, 222–230 (1999).
[67] [67] Shoelson, S. E., Herrero, L. and Naaz, A., “Obesity, inflammation, and insulin resistance,” Gastroenterology 132, 2169–2180 (2007).
[68] [68] Rose, D. P., Connolly, J. M. and Meschte, C. L., “Effect of dietary fat on human breast cancer growth and lung metastasis in nude mice,” J. Natl. Cancer Inst. 83, 1491–1495 (1991).
[69] [69] Risch, H. A., Jain, M., Marrett, L. D. and Howe, G. R., “Dietary fat intake and risk of epithelial ovarian cancer,” J. Natl. Cancer Inst. 86, 1409– 1415 (1994).
[70] [70] Garofalo, C. and Surmacz, E., “Leptin and cancer,” J. Cell Physiol. 207, 12–22 (2006).
[71] [71] Ramos, C. V. and Taylor, H. B., “Lipid-rich carcinoma of the breast: A clinicopathologic analysis of 13 examples,” Cancer 33, 812–819 (1973).
[72] [72] Metser, U. et al., “F-18-FDG PET/CT in the evaluation of adrenal masses,” J. Nucl. Med. 47, 32–37 (2006).
[73] [73] Sijens, P. E., Levendag, P. C., Vecht, C. J., vanDijk, P. and Oudkerk, M., “H-1 MR spectroscopy detection of lipids and lactate in metastatic brain tumors,” NMR Biomed. 9, 65–71 (1996).
[74] [74] Pierce, M. C., Javier, D. J. and Richards-Kortum, R., “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123, 1979–1990 (2008).
[75] [75] Tearney, G. J., Brezinski, M. E., Bouma, B. E., Boppart, S. A., Pitris, C., Southern, J. F. and Fujimoto, J. G., “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037– 2039 (1997).
[76] [76] Tromberg, B. J., Pogue, B. W., Paulsen, K. D., Yodh, A. G., Boas, D. A. and Cerussi, A. E., “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
[77] [77] Rosemond, W., Flegal, K., Furie, K., Go, A., Greenlund, K., Haase, N., Hailpern, S. M., Ho, M., Howard, V., Kissela, B., Kittner, S., Lloyd-Jones, D., McDermott, M., Meigs, J., Moy, C., Nickol, G., O’Donell, C., Roger, V., Sorlie, P., Steinberger, J., Thom, T.,Wilson, M. andHang, Y., “Heart disease and strokes statistic — 2008 update,” Circulation 117, 25–146 (2008).
[78] [78] Libby, P. and Aikawa, M., “Stabilization of atherosclerotic plaques: New mechanisms and clinical targets,” Nat. Med. 8, 1257–1262 (2002).
[79] [79] Tuzcu, E. M., Kapadia, S. R., Tutar, E., Ziada, K. M., Hobbs, R. E., McCarthy, P. M., Young, J. B. and Nissen, S. E., “High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults — Evidence from intravascular ultrasound,” Circulation 103, 2705–2710 (2001).
[80] [80] Virmani, R., Kolodgie, F., Burke, A. P., Farb, A. and Schwartz, S. M., “Lessons from sudden coronary death — A comprehensive morphological classification scheme for atherosclerotic lesions,” Arterioscler. Thromb. Vasc. Biol. 20, 1262–1275 (2000).
[81] [81] Steinberg, D., “Atherogenesis in perspective: Hypercholesterolemia and inflammation as partners in crime,” Nature Med. 8, 1211–1217 (2002).
[82] [82] Lusis, A. J., “Atherosclerosis,” Nature 407, 233– 241 (2000).
[83] [83] Davies, M. J., Richardson, P. D., Woolf, N., Katz, D. R. and Mann, J., “Risk of thrombosis in human atherosclerotic plaques—role of extracellular lipid, macrophage, and smooth-muscle cell content,” Br. Heart. J. 69, 377–381 (1993).
[84] [84] Choudhury, R. P., Fuster, V. and Fayad, Z. A., “Molecular, cellular and functional imaging of atherothrombosis,” Nat. Rev. Drug. Discov. 3, 913–925 (2004).
[85] [85] Marcu, L., Fishbein, M. C., Maarek, J. M. I. and Grundfest, W. S., “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol. 21, 1244–1250 (2001).
[86] [86] Motz, J. T., Fitzmaurice, M., Miller, A., Gandhi, S. J., Haka, A. S., Galindo, L. H., Dasari, R. R., Kramer, J. R. and Feld, M. S., “In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque,” J. Biomed. Opt. 11, 021003 (2006).
[87] [87] Nadkarni, S. K., Bouma, B., Helg, T., Chan, R., Halpern, E., Chau, A., Minsky, M. S., Motz, J. T., Houser, S. L. and Tearney, G. J., “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112, 885–892 (2005).
[88] [88] Eriksson, E. E., Xie, X., Werr, J., Thoren, P. and Lindbom, L., “Direct viewing of atherosclerosis in vivo: plaque invasion by leukocytes is initiated by the endothelial selectins,” FASEB J. 15, 1149–1157 (2001).
[89] [89] Huo, Y. Q., Schober, A., Forlow, S. B., Smith, D. F., Hyman, M. C., Jung, S., Littman, D. R., Weber, C. and Ley, K., “Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E,” Nature Med. 9, 61–67 (2003).
[90] [90] Zoumi, A., Lu, X. A., Kassab, G. S. and Tromberg, B. J., “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87, 2778–2786 (2004).
[91] [91] Yu, W. M., Braz, J. C., Dutton, A. M., Prusakov, P. and Rekhter, M., “In vivo imaging of atherosclerotic plaques in apolipoprotein E deficient mice using nonlinear microscopy,” J. Biomed. Opt. 12, 054008 (2007).
[92] [92] van Zandvoort, M., Engels, W., Douma, K., Beckers, L., Oude Egbrink, M., Daemen, M. and Slaaf, D. W., “Two-photon microscopy for imaging of the (atherosclerotic) vascular wall: A proof of concept study,” J. Vasc. Res. 41, 54–63 (2004).
[93] [93] Le, T. T., Langohr, I. M., Locker, M. J., Sturek, M. and Cheng, J. X., “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12, 054007 (2007).
[94] [94] Wang, H. W., Le, T. T. and Cheng, J. X., “Labelfree imaging of arterial cells and extracellular matrix using a multimodal CARS microscope,” Opt. Comm. 281, 1813–1822 (2008).
[95] [95] Wang, H. F., Fu, Y., Zickmund, P., Shi, R. Y. and Cheng, J. X., “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
[96] [96] Sherman, D. L. and Brophy, P. J., “Mechanisms of axon ensheathment and myelin growth,” Nat. Rev. Neurosci. 6, 683–690 (2005).
[97] [97] Sospedra, M. and Martin, R., “Immunology of multiple sclerosis,” Annu. Rev. Immunol. 23, 683– 747 (2005).
[98] [98] Fu, Y., Wang, H. F., Huff, T. B., Shi, R. and Cheng, J. X., “Coherent anti-stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdChoinduced demyelination,” J. Neurosci. Res. 85, 2870–2881 (2007).
[99] [99] Evans, C. L., Xu, X., Kesari, S., Xie, X. S., Wong, S. T. C. and Young. G. S., “Chemically selective imaging of brain structures with CARS microscopy,” Opt. Express. 15, 12076–12087 (2007).
[100] [100] Fu, Y., Huff, T. B., Wang, H. W., Wang, H. F. and Cheng, J. X., “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti- Stokes Raman microscopy,” Opt. Express. 16, 19396–19409 (2008).
[101] [101] Caspers, P. J., Lucassen, G.W. and Puppels, G. J., “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572–580 (2003).
[102] [102] Smith, K. R. and Thiboutot, D. M., “Sebaceous gland lipids: Friend or foe ,” J. Lipid. Res. 49, 271– 281 (2008).
[103] [103] Ganikhanov, F., Carrasco, S., Xie, X. S., Katz, M., Seitz, W. and Kopf, D., “Broadly tunable dual-wavelength light source for coherent anti- Stokes Raman scattering microscopy,” Opt. Lett. 31, 1292–1294 (2006).
[104] [104] Wright, A. J., Poland, S. P., Girkin, J. M., Freudiger, C. W., Evans, C. L. and Xie, X. S., “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express. 15, 18209–18219 (2007).
[105] [105] Legare, F., Evans, C. L., Ganikhanov, F. and Xie, X. S., “Towards CARS endoscopy,” Opt. Express. 14, 4427–4432 (2006).
[106] [106] Llewellyn, M. E., Barretto, R. P. J., Delp, S. L. and Schnitzer, M. J., “Minimally invasive highspeed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454, 784–788 (2008).
Get Citation
Copy Citation Text
THUC T. LE, JI-XIN CHENG. NON-LINEAR OPTICAL IMAGING OF OBESITY-RELATED HEALTH RISKS: REVIEW[J]. Journal of Innovative Optical Health Sciences, 2009, 2(1): 9
Received: --
Accepted: --
Published Online: Jan. 10, 2019
The Author Email: LE THUC T. (thuc@purdue.edu)
CSTR:32186.14.