Optics and Precision Engineering, Volume. 32, Issue 12, 1954(2024)
Dual attention refinement single image desnowing
[1] J BOSSU, N HAUTIÈRE, J P TAREL. Rain or snow detection in image sequences through use of a Histogram of orientation of streaks. International Journal of Computer Vision, 93, 348-367(2011).
[2] X H ZHENG, Y H LIAO, W GUO et al. Single-image-based rain and snow removal using multi-guided filter, 258-265(2013).
[3] S C PEI, Y T TSAI, C Y LEE. Removing rain and snow in a single image using saturation and visibility features, 1-6(2014).
[4] D RAJDERKAR, P S MOHOD. Removing snow from an image via image decomposition, 576-579(2013).
[5] Y F LIU, D W JAW, S C HUANG et al. DesnowNet: context-aware deep network for snow removal. IEEE Transactions on Image Processing, 27, 3064-3073(2018).
[6] W T CHEN, H Y FANG, J J DING et al. JSTASR: joint size and transparency-aware snow removal algorithm based on modified partial convolution and veiling effect removal, 754-770(2020).
[7] W T CHEN, H Y FANG, C L HSIEH et al. ALL snow removed: single image desnowing algorithm using hierarchical dual-tree complex wavelet representation and contradict channel loss, 4176-4185(2021).
[8] Y L WANG, C MA, J Z LIU. SmartAssign: learning a smart knowledge assignment strategy for deraining and desnowing, 3677-3686(2023).
[9] J PARK, J Y LEE et al. CBAM: convolutional block attention module, 3-19(2018).
[10] J FU, J LIU, H J TIAN et al. Dual attention network for scene segmentation, 3141-3149(2019).
[11] M Y DING, B XIAO, N CODELLA et al. DaViT: dual attention vision transformers, 74-92(2022).
[12] J HU, L SHEN, G SUN. Squeeze-and-excitation networks, 7132-7141(2018).
[13] L Y CHEN, X J CHU, X Y ZHANG et al. Simple baselines for image restoration, 17-33(2022).
[14] Y W LI, Y C FAN, X Y XIANG et al. Efficient and explicit modelling of image hierarchies for image restoration, 18278-18289(2023).
[15] H Y ZHAO, X T KONG, J W HE et al. Efficient image super-resolution using pixel attention, 56-72(2020).
[16] W B ZOU, T YE, W X ZHENG et al. Self-calibrated efficient transformer for lightweight super-resolution, 929-938(2022).
[17] O RONNEBERGER, P FISCHER, T BROX. U-net: convolutional networks for biomedical image segmentation, 234-241(2015).
[18] S W ZAMIR, A ARORA, S KHAN et al. Restormer: efficient transformer for high-resolution image restoration, 5718-5729(2022).
[19] L Y CHEN, X LU, J ZHANG et al. HINet: half instance normalization network for image restoration, 182-192(2021).
[20] Z WANG, A C BOVIK, H R SHEIKH et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600-612(2004).
[21] D ENGIN, A GENC, H K EKENEL. Cycle-dehaze: enhanced cyclegan for single image dehazing, 938-9388(2018).
[22] X LI, J L WU, Z C LIN et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining, 262-277(2018).
[23] R T LI, R T TAN, L F CHEONG. All in one bad weather removal using architectural search, 3172-3182(2020).
[24] J M JOSE VALANARASU, R YASARLA, V M PATEL. TransWeather: transformer-based restoration of images degraded by adverse weather conditions, 2343-2353(2022).
Get Citation
Copy Citation Text
Mingzhu SHI, Bin ZAO, Yuhao SU, Xinhui LIN, Siqi KONG, Muxian TAN. Dual attention refinement single image desnowing[J]. Optics and Precision Engineering, 2024, 32(12): 1954
Category:
Received: Nov. 13, 2023
Accepted: --
Published Online: Aug. 28, 2024
The Author Email: SHI Mingzhu (shimz@tjnu.edu.cn)