Opto-Electronic Engineering, Volume. 51, Issue 8, 240079(2024)
Advances on the manipulation of structured beams with multiple degrees of freedom
[1] A Forbes, Oliveira M de, M R Dennis. Structured light. Nat Photonics, 15, 253-262(2021).
[2] A Forbes. Structured light from lasers. Laser Photonics Rev, 13, 1900140(2019).
[3] W Li, J W Yu, A M Yan. Research progress of vortex beam array generation technology. Laser Optoelectron Prog, 57, 090002(2020).
[4] M E Fermann, I Hartl. Ultrafast fibre lasers. Nat Photonics, 7, 868-874(2013).
[5] T Fortier, E Baumann. 20 years of developments in optical frequency comb technology and applications. Commun Phys, 2, 153(2019).
[6] L Chang, S T Liu, J E Bowers. Integrated optical frequency comb technologies. Nat Photonics, 16, 95-108(2022).
[7] J X Zuo, X C Lin. High-power laser systems. Laser Photonics Rev, 16, 2100741(2022).
[8] C Rosales-Guzmán, B Ndagano, A Forbes. A review of complex vector light fields and their applications. J Opt, 20, 123001(2018).
[9] S J Zheng, X Lin, Z Y Huang et al. Light field regulation based on polarization holography. Opto-Electron Eng, 49, 220114(2022).
[10] L Allen, M W Beijersbergen, R J C Spreeuw et al. Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Phys Rev A, 45, 8185-8189(1992).
[11] Z C Zhang, L Hai, S Y Fu et al. Advances on solid-state vortex laser. Photonics, 9, 215(2022).
[12] A M Yao, M J Padgett. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics, 3, 161-204(2011).
[13] R Y Zeng, Q Zhao, Y J Shen et al. Structural stability of open vortex beams. Appl Phys Lett, 119, 171105(2021).
[14] Y H Bai, H R Lv, X Fu et al. Vortex beam: generation and detection of orbital angular momentum [Invited]. Chin Opt Lett, 20, 012601(2022).
[15] J Wang, J Y Yang, I M Fazal et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics, 6, 488-496(2012).
[16] N Bozinovic, Y Yue, Y X Ren et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).
[17] A E Willner, H Huang, Y Yan et al. Optical communications using orbital angular momentum beams. Adv Opt Photonics, 7, 66-106(2015).
[18] S Y Yu. Potentials and challenges of using orbital angular momentum communications in optical interconnects. Opt Express, 23, 3075-3087(2015).
[19] J Wang. Advances in communications using optical vortices. Photonics Res, 4, B14-B28(2016).
[20] S Y Fu, Y W Zhai, H Zhou et al. Demonstration of high-dimensional free-space data coding/decoding through multi-ring optical vortices. Chin Opt Lett, 17, 080602(2019).
[21] S Y Fu, Y W Zhai, H Zhou et al. Experimental demonstration of free-space multi-state orbital angular momentum shift keying. Opt Express, 27, 33111-33119(2019).
[22] S Y Fu, Y W Zhai, H Zhou et al. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding. Opt Lett, 44, 4753-4756(2019).
[23] M P J Lavery, F C Speirits, S M Barnett et al. Detection of a spinning object using light's orbital angular momentum. Science, 341, 537-540(2013).
[24] M P J Lavery, S M Barnett, F C Speirits et al. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body. Optica, 1, 1-4(2014).
[25] L Fang, M J Padgett, J Wang. Sharing a common origin between the rotational and linear doppler effects (Laser Photonics Rev. 11(6)/2017). Laser Photonics Rev, 11, 1770064(2017).
[26] S Y Fu, T L Wang, Z Y Zhang et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions. Opt Express, 25, 20098-20108(2017).
[27] W H Zhang, J S Gao, D K Zhang et al. Free-space remote sensing of rotation at the photon-counting level. Phys Rev Appl, 10, 044014(2018).
[28] S Qiu, T Liu, Y Ren et al. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect. Opt Express, 27, 24781-24792(2019).
[29] Y W Zhai, S Y Fu, C Yin et al. Detection of angular acceleration based on optical rotational Doppler effect. Opt Express, 27, 15518-15527(2019).
[30] Y W Zhai, S Y Fu, J Q Zhang et al. Remote detection of a rotator based on rotational Doppler effect. Appl Phys Express, 13, 022012(2020).
[31] M Padgett, R Bowman. Tweezers with a twist. Nat Photonics, 5, 343-348(2011).
[32] M Z Chen, M Mazilu, Y Arita et al. Dynamics of microparticles trapped in a perfect vortex beam. Opt Lett, 38, 4919-4922(2013).
[33] M Gecevičius, R Drevinskas, M Beresna et al. Single beam optical vortex tweezers with tunable orbital angular momentum. Appl Phys Lett, 104, 231110(2014).
[34] Y S Liang, B L Yao, B H Ma et al. Holographic optical trapping and manipulation based on phase-only liquid-crystal spatial light modulator. Acta Opt Sin, 36, 309001(2016).
[35] Y J Yang, Y X Ren, M Z Chen et al. Optical trapping with structured light: a review. Adv Photonics, 3, 034001(2021).
[36] R Fickler, R Lapkiewicz, M Huber et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nat Commun, 5, 4502(2014).
[37] H Cao, S C Gao, C Zhang et al. Distribution of high-dimensional orbital angular momentum entanglement over a 1 km few-mode fiber. Optica, 7, 232-237(2020).
[38] Z X Li, D Zhu, P C Lin et al. High-dimensional entanglement generation based on a Pancharatnam-Berry phase metasurface. Photonics Res, 10, 2702-2707(2022).
[39] Y J Shen, C Rosales-Guzmán. Nonseparable states of light: from quantum to classical. Laser Photonics Rev, 16, 2100533(2022).
[40] Z S Wan, H Wang, Q Liu et al. Ultra-degree-of-freedom structured light for ultracapacity information carriers. ACS Photonics, 10, 2149-2164(2023).
[41] Y L Liu, Z Dong, Y H Chen et al. Research advances of partially coherent beams with novel coherence structures: engineering and applications. Opto-Electron Eng, 49, 220178(2022).
[42] D K Zhang, X Feng, K Y Cui et al. Identifying orbital angular momentum of vectorial vortices with pancharatnam phase and stokes parameters. Sci Rep, 5, 11982(2015).
[43] V G Niziev, A V Nesterov. Influence of beam polarization on laser cutting efficiency. J Phys D: Appl Phys, 32, 1455-1461(1999).
[44] M Meier, V Romano, T Feurer. Material processing with pulsed radially and azimuthally polarized laser radiation. Appl Phys A Mater Sci Process, 86, 329-334(2007).
[45] W Q Zhao, F Tang, L R Qiu et al. Research status and application on the focusing properties of cylindrical vector beams. Acta Phys Sin, 62, 054201(2013).
[46] Z H Zhou, Q F Tan, G F Jin. Surface plasmon interference formed by tightly focused higher polarization order axially symmetric polarized beams. Chin Opt Lett, 8, 1178-1181(2010).
[47] F Töppel, A Aiello, C Marquardt et al. Classical entanglement in polarization metrology. New J Phys, 16, 073019(2014).
[48] Y J Shen, Q Zhang, P Shi et al. Optical skyrmions and other topological quasiparticles of light. Nat Photonics, 18, 15-25(2024).
[49] G Lazarev, P J Chen, J Strauss et al. Beyond the display: phase-only liquid crystal on Silicon devices and their applications in photonics [Invited]. Opt Express, 27, 16206-16249(2019).
[50] M Mirhosseini, O S Magaña-Loaiza, C C Chen et al. Rapid generation of light beams carrying orbital angular momentum. Opt Express, 21, 30196-30203(2013).
[51] Y X Ren, M Li, K Huang et al. Experimental generation of Laguerre-Gaussian beam using digital micromirror device. Appl Opt, 49, 1838-1844(2010).
[52] Y Chen, Z X Fang, Y X Ren et al. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device. Appl Opt, 54, 8030-8035(2015).
[53] W Ji, C H Lee, P Chen et al. Meta-q-plate for complex beam shaping. Sci Rep, 6, 25528(2016).
[54] H Zhou, J Q Yang, C Q Gao et al. High-efficiency, broadband all-dielectric transmission metasurface for optical vortex generation. Opt Mater Express, 9, 2699-2707(2019).
[55] A M Shaltout, K G Lagoudakis, De Groep J Van et al. Spatiotemporal light control with frequency-gradient metasurfaces. Science, 365, 374-377(2019).
[56] A M Shaltout, V M Shalaev, M L Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).
[57] P H Jones, M Rashid, M Makita et al. Sagnac interferometer method for synthesis of fractional polarization vortices. Opt Lett, 34, 2560-2562(2009).
[58] S Liu, P Li, T Peng et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer. Opt Express, 20, 21715-21721(2012).
[59] P Li, Y Zhang, S Liu et al. Generation of perfect vectorial vortex beams. Opt Lett, 41, 2205-2208(2016).
[60] S Liu, S X Qi, Y Zhang et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude. Photonics Res, 6, 228-233(2018).
[61] C Maurer, A Jesacher, S Fürhapter et al. Tailoring of arbitrary optical vector beams. New J Phys, 9, 78(2007).
[62] X L Wang, J P Ding, W J Ni et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt Lett, 32, 3549-3551(2007).
[63] Y Y Xie, Z J Cheng, X Liu et al. Simple method for generation of vector beams using a small-angle birefringent beam splitter. Opt Lett, 40, 5109-5112(2015).
[64] Y J Shen, E C Martínez, C Rosales-Guzmán. Generation of optical skyrmions with tunable topological textures. ACS Photonics, 9, 296-303(2022).
[65] I Moreno, J A Davis, D M Cottrell et al. Encoding high-order cylindrically polarized light beams. Appl Opt, 53, 5493-5501(2014).
[66] S Y Fu, C Q Gao, Y Shi et al. Generating polarization vortices by using helical beams and a Twyman Green interferometer. Opt Lett, 40, 1775-1778(2015).
[67] S Y Fu, T L Wang, C Q Gao. Generating perfect polarization vortices through encoding liquid-crystal display devices. Appl Opt, 55, 6501-6505(2016).
[68] L Marrucci, C Manzo, D Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys Rev Lett, 96, 163905(2006).
[69] X N Yi, X H Ling, Z Y Zhang et al. Generation of cylindrical vector vortex beams by two cascaded metasurfaces. Opt Express, 22, 17207-17215(2014).
[70] S Y Fu, C Q Gao, T L Wang et al. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders. Opt Lett, 41, 5454-5457(2016).
[71] F Y Yue, D D Wen, C M Zhang et al. Multichannel polarization-controllable superpositions of orbital angular momentum states. Adv Mater, 29, 1603838(2017).
[72] X Zhang, L L Huang, R Z Zhao et al. Multiplexed generation of generalized vortex beams with on-demand intensity profiles based on metasurfaces. Laser Photonics Rev, 16, 2100451(2022).
[73] H S Wu, Q J Zeng, X R Wang et al. Polarization-dependent phase-modulation metasurface for vortex beam (de)multiplexing. Nanophotonics, 12, 1129-1135(2023).
[74] L Ke, S M Zhang, C X Li et al. Research progress on hybrid vector beam implementation by metasurfaces. Opto-Electron Eng, 50, 230117(2023).
[75] D Naidoo, F S Roux, A Dudley et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat Photonics, 10, 327-332(2016).
[76] J T Fan, J Zhao, L P Shi et al. Two-channel, dual-beam-mode, wavelength-tunable femtosecond optical parametric oscillator. Adv Photonics, 2, 045001(2020).
[77] R Song, C Q Gao, H Zhou et al. Resonantly pumped Er: YAG vector laser with selective polarization states at 1.6 µm. Opt Lett, 45, 4626-4629(2020).
[78] R Song, X T Liu, S Y Fu et al. Simultaneous tailoring of longitudinal and transverse mode inside an Er: YAG laser. Chin Opt Lett, 19, 111404(2021).
[79] H Sroor, Y W Huang, B Sephton et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat Photonics, 14, 498-503(2020).
[80] Y J Shen, Z Y Wang, X Fu et al. SU(2) Poincare sphere: A generalized representation for multidimensional structured light. Phys Rev A, 102, 031501(2020).
[81] Y J Shen. Rays, waves, SU(2) symmetry and geometry: toolkits for structured light. J Opt, 23, 124004(2021).
[82] Y F Chen, C H Jiang, Y P Lan et al. Wave representation of geometrical laser beam trajectories in a hemiconfocal cavity. Phys Rev A, 69, 053807(2004).
[83] J Dingjan, Exter M P van, J P Woerdman. Geometric modes in a single-frequency Nd: YVO4 laser. Opt Commun, 188, 345-351(2001).
[84] Y J Shen, X L Yang, X Fu et al. Periodic-trajectory-controlled, coherent-state-phase-switched, and wavelength-tunable SU(2) geometric modes in a frequency-degenerate resonator. Appl Opt, 57, 9543-9549(2018).
[85] J C Tung, H C Liang, T H Lu et al. Exploring vortex structures in orbital-angular-momentum beams generated from planar geometric modes with a mode converter. Opt Express, 24, 22796-22805(2016).
[86] Y J Shen, X L Yang, D Naidoo et al. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser: erratum. Optica, 7, 1705(2020).
[87] Z S Wan, Z Y Wang, X L Yang et al. Digitally tailoring arbitrary structured light of generalized ray-wave duality. Opt Express, 28, 31043-31056(2020).
[88] Y J Shen, I Nape, X L Yang et al. Creation and control of high-dimensional multi-partite classically entangled light. Light Sci Appl, 10, 50(2021).
[89] Z Y Wang, Y J Shen, D Naidoo et al. Astigmatic hybrid SU(2) vector vortex beams: towards versatile structures in longitudinally variant polarized optics. Opt Express, 29, 315-329(2021).
[90] Z S Wan, Y J Shen, Q Liu et al. Multipartite classically entangled scalar beams. Opt Lett, 47, 2052-2055(2022).
[91] J Pan, Z Y Wang, Z Y Zhan et al. Multiaxial super-geometric mode laser. Opt Lett, 48, 1630-1633(2023).
[92] Z S Wan, Y J Shen, Z Y Wang et al. Divergence-degenerate spatial multiplexing towards future ultrahigh capacity, low error-rate optical communications. Light Sci Appl, 11, 144(2022).
[93] L Hai, Z C Zhang, S L Liu et al. Intra-cavity laser manipulation of high-dimensional non-separable states. Laser Photonics Rev, 18, 2300593(2024).
[94] D G Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).
[95] S Y Fu, T L Wang, C Q Gao. Perfect optical vortex array with controllable diffraction order and topological charge. J Opt Soc America A, 33, 1836-1842(2016).
[96] S Y Fu, S K Zhang, T L Wang et al. Rectilinear lattices of polarization vortices with various spatial polarization distributions. Opt Express, 24, 18486-18491(2016).
[98] H Wang, S Y Fu, C Q Gao. Tailoring a complex perfect optical vortex array with multiple selective degrees of freedom. Opt Express, 29, 10811-10824(2021).
[99] S Y Fu, T L Wang, Z Y Zhang et al. Selective acquisition of multiple states on hybrid Poincare sphere. Appl Phys Lett, 110, 191102(2017).
[100] Z J Shang, S Y Fu, L Hai et al. Multiplexed vortex state array toward high-dimensional data multicasting. Opt Express, 30, 34053-34063(2022).
[101] M Piccardo, Oliveira M de, A Toma et al. Vortex laser arrays with topological charge control and self-healing of defects. Nat Photonics, 16, 359-365(2022).
[102] M Yessenov, L A Hall, K L Schepler et al. Space-time wave packets. Adv Opt Photonics, 14, 455-570(2022).
[103] Q Cao, Q W Zhan. Spatiotemporal sculpturing of light and recent development in spatiotemporal optical vortices wavepackets (Invited). Acta Photonica Sin, 51, 0151102(2022).
[104] J C Ni, C W Wang, C C Zhang et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci Appl, 6, e17011(2017).
[105] G Ruffato. Non-destructive OAM measurement via light-matter interaction. Light Sci Appl, 11, 55(2022).
[106] Z Zhao, H Song, R Z Zhang et al. Dynamic spatiotemporal beams that combine two independent and controllable orbital-angular-momenta using multiple optical-frequency-comb lines. Nat Commun, 11, 4099(2020).
[107] A Chong, C H Wan, J Chen et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat Photonics, 14, 350-354(2020).
[108] C H Wan, J Chen, A Chong et al. Photonic orbital angular momentum with controllable orientation. Natl Sci Rev, 9, nwab149(2022).
[109] Q Cao, P K Zheng, Q W Zhan. Vectorial sculpturing of spatiotemporal wavepackets. APL Photonics, 7, 096102(2022).
[110] C H Wan, Q Cao, J Chen et al. Toroidal vortices of light. Nat Photonics, 16, 519-522(2022).
[111] W Chen, Y Liu, A Z Yu et al. Observation of chiral symmetry breaking in toroidal vortices of light. Phys Rev Lett, 132, 153801(2024).
[112] N Papasimakis, T Raybould, V A Fedotov et al. Pulse generation scheme for flying electromagnetic doughnuts. Phys Rev B, 97, 201409(2018).
[113] Y J Shen, B S Yu, H J Wu et al. Topological transformation and free-space transport of photonic hopfions. Adv Photonics, 5, 015001(2023).
[114] A Zdagkas, C McDonnell, J H Deng et al. Observation of toroidal pulses of light. Nat Photonics, 16, 523-528(2022).
[115] C Guo, M Xiao, M Orenstein et al. Structured 3D linear space-time light bullets by nonlocal nanophotonics. Light Sci Appl, 10, 160(2021).
Get Citation
Copy Citation Text
Zhichao Zhang, Lan Hai, Shurui Zhang, Chunqing Gao, Shiyao Fu. Advances on the manipulation of structured beams with multiple degrees of freedom[J]. Opto-Electronic Engineering, 2024, 51(8): 240079
Category:
Received: Mar. 31, 2024
Accepted: Apr. 28, 2024
Published Online: Nov. 12, 2024
The Author Email: Fu Shiyao (付时尧)