Opto-Electronic Engineering, Volume. 43, Issue 1, 60(2016)
Tunable Broadband Absorber in Terahertz Regime Based on Graphene and Metallic Sub-wavelength Structure
[1] [1] Sirtori C. Bridge for the terahertz gap [J]. Nature(S0028-0836),2002,417:132-133.
[2] [2] Siegel P H. Terahertz technology [J]. IEEE Transactions on Microwave Theory and Techniques(S0018-9480),2002,50(3): 910-928.
[3] [3] Tonouchi M. Cutting-edge terahertz technology [J]. Nature Photonics(S1749-4885),2007,1(2):97–105.
[4] [4] Landy N I,Sajuyigbe S,Mock J J,et al. Perfect metamaterial absorber [J]. Physical Review Letter(S0031-9007),2008,100(20):207402.
[5] [5] HU Tao,Binghan C M,Strikwerda A C,et al. Highly flexible wide angle of incidence terahertz metamaterial absorber:Design, fabrication,and characterization [J]. Physical Review B(S1098-0121),2008,78(24):241103.
[6] [6] Withayachumnankul W,Abbott D. Metamaterials in the terahertz regime [J]. IEEE Photonics Journal(S1943-0655),2009, 1(2):99-118.
[7] [7] LIU Xianliang,Starr T,Starr A F,et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance [J]. Physical Review Letter(S0031-9007),2010,104(20):207403.
[8] [8] LIU Na,Mesch M,Weiss T,et al. Infrared perfect absorber and its application as plasmonic sensor [J]. Nano Letters(S1530-6992),2010,10(7):2342.
[9] [9] Teperik T V,García de Abajo F J,Borisov A G,et al. Omnidirectional absorption in nanostructured metal surfaces [J]. Nature Photonics(S1749-4885),2008,2(5):299–301.
[10] [10] YE Yuqian,JIN Yi,HE Sailing. Omnidirectional,polarization-insensitive and broadband thin absorber in the terahertz regime [J]. Journal of the Optical Society of America B-optical Physics(S0740-3224),2010,27(3):498-504.
[11] [11] GUO Yinghui,YAN Lianshan,PAN Wei,et al. Ultra-broadband terahertz absorbers based on 4×4 cascaded metal-dielectric pairs [J]. Plasmonics(S1557-1963),2014,9:951.
[12] [12] FENG Qin,PU Mingbo,HU Chenggang,et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption [J]. Optics Letters(S0895-2477),2012,37(11):2133-2135.
[13] [13] WANG Benxin,WANG Lingling,WANG Guizhen,et al. Frequency continuous tunable terahertz metamaterial absorber [J]. Journal of Lightwave Technology(S0733-8724),2014,32(6):1183-1189.
[14] [14] CHEN Houtong,Padilla W J,Zide J M,et al. Active terahertz metamaterial devices [J]. Nature(S0028-0836),2006, 444(7119):597–600.
[15] [15] Novoselov K S,Geim A K,Morozov S V,et al. Electric field effect in atomically thin carbon films [J]. Science(S0036-8075), 2004,306:666-669.
[16] [16] WANG Feng,ZHANG Yuanbo,TIAN Chuanshan,et al. Gate-variable optical transitions in graphene [J]. Science (S0036-8075),2008,320(5873):206-209.
[17] [17] ZHANG Yuanbo,TANG Tsung-Ta,Girit C,et al. Direct observation of a widely tunable bandgap in bilayer graphene [J]. Nature(S0028-0836),2009,459(7248):820-823.
[18] [18] JU Long ,GENG Baisong , Horng J , et al. Graphene plasmonics for tunable terahertz metamaterials [J]. Nature Nanotechnology(S1748-3387),2011,6(10):630-634.
[19] [19] Vakil A,Engheta N. Transformation optics using graphene [J]. Science(S0036-8075),2011,332(6035):1291-1294.
[20] [20] YAN Hugen,LI Xuesong,Chandra B,et al. Tunable infrared plasmonic devices using graphene/insulator stacks [J]. Nature Nanotechnology(S1748-3387),2012,7(5):330-334.
[21] [21] PU Mingbo,CHEN Po,WANG Yanqin,et al. Strong enhancement of light absorption and highly directive thermal emission in graphene [J]. Optics Express(S1094-4087),2013,21(10):11618-11627.
[22] [22] XU Bingzheng,GU Changqing,LI Zhuo,et al. A novel structure for tunable terahertz absorber based on graphene [J]. Optics Express(S1094-4087),2013,21(20):23803-23801.
[23] [23] Woo J M,Kim M S,Kim H W,et al. Graphene based salisbury screen for terahertz absorber [J]. Applied Physics Letters(S0003-6951),2014,104(8):081106.
[24] [24] Alaee R,Farhat M,Rockstuhl C,et al. A perfect absorber made of a graphene micro-ribbon metamaterial [J]. Optics Express(S1094-4087),2012,20(27):28017-28024.
[25] [25] Amin M,Farhat M,Ba c H. An ultra-broadband multilayered graphene absorber [J]. Optics Express(S1094-4087),2013, 21(24):29938-29948.
[26] [26] Andryieuski A,Lavrinenko A V. Graphene metamaterials based tunable terahertz absorber:effective surface conductivity approach [J]. Optics Express(S1094-4087),2013,21(7):9144-9155.
[27] [27] ZHANG Yin,FENG Yijun,ZHU Bo,et al. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency [J]. Optics Express(S1094-4087),2014,22(19):22743-22752.
[28] [28] Falkovsky L A,Pershoguba S S. Optical far-Infrared properties of a graphene monolayer and multilayer [J]. Physical Review B(S1098-0121),2007,76:153410.
[29] [29] Hwang E H,Das Sarma S. Dielectric function,screening,and plasmons in two-dimensional graphene [J]. Physical Review B(S1098-0121),2007,75:205418.
[30] [30] Gusynin V P,Sharapov S G,Carbotte J P. Magneto-optical conductivity in graphene [J]. Journal of Physics-condensed Matter(S0953-8984),2007,19:026222.
[31] [31] Hanson G W. Dyadic Greens functions and guided surface waves for a surface conductivity model of graphene [J]. Journal of Applied Physics(S0021-8979),2008,103:064302.
[32] [32] PU Mingbo,HU Chenggang,WANG Min,et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure [J]. Optics Express(S1094-4087),2011,19(18):17413-17420.
Get Citation
Copy Citation Text
GU Yu, WANG Min, PU Mingbo, HU Chenggang, LUO Xiangang. Tunable Broadband Absorber in Terahertz Regime Based on Graphene and Metallic Sub-wavelength Structure[J]. Opto-Electronic Engineering, 2016, 43(1): 60
Category:
Received: Apr. 13, 2015
Accepted: --
Published Online: Mar. 22, 2016
The Author Email: