Optics and Precision Engineering, Volume. 31, Issue 15, 2273(2023)
Image super-resolution reconstruction based on attention and wide-activated dense residual network
[1] [1] 1耿铭昆, 吴凡路, 王栋. 轻量化火星遥感影像超分辨率重建网络[J]. 光学 精密工程, 2022, 30(12):1487-1498. doi: 10.37188/OPE.20223012.1487GENGM K, WUF L, WANGD. Lightweight Mars remote sensing image super-resolution reconstruction network[J]. Opt. Precision Eng., 2022, 30(12):1487-1498.(in Chinese). doi: 10.37188/OPE.20223012.1487
[2] [2] 2李勇, 王珂, 张立保, 等. 多断层融合的肺CT肿瘤靶区超分辨率重建[J]. 光学 精密工程, 2010, 18(5):1212-1218. doi: 10.3788/OPE.20101805.1212LIY, WANGK, ZHANGL B, et al. Super-resolution reconstruction of pulmonary nodules based on CT multi-section fusion[J]. Opt. Precision Eng., 2010, 18(5):1212-1218.(in Chinese). doi: 10.3788/OPE.20101805.1212
[3] [3] 3王杰, 徐国明, 马健, 等. 轻量级注意力级联网络的偏振计算成像超分辨率重建[J]. 光学 精密工程, 2022, 30(19):2404-2419. doi: 10.37188/OPE.20223019.2404WANGJ, XUG M, MAJ, et al. Polarization computational imaging super-resolution reconstruction with lightweight attention cascading network[J]. Opt. Precision Eng., 2022, 30(19):2404-2419.(in Chinese). doi: 10.37188/OPE.20223019.2404
[4] X LI, M T ORCHARD. New edge-directed interpolation. IEEE Transactions on Image Processing, 10, 1521-1527(2001).
[5] X M LIU, D B ZHAO, J T ZHOU et al. Image interpolation via graph-based Bayesian label propagation. IEEE Transactions on Image Processing, 23, 1084-1096(2014).
[6] S Y DAI, M HAN, W XU et al. SoftCuts: a soft edge smoothness prior for color image super-resolution. IEEE Transactions on Image Processing, 18, 969-981(2009).
[7] C DONG, C C LOY, K M HE et al. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).
[8] W Z SHI, J CABALLERO, F HUSZÁR et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, 1874-1883(2016).
[9] J KIM, J K LEE, K M LEE. Accurate image super-resolution using very deep convolutional networks, 1646-1654(2016).
[10] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).
[11] J KIM, J K LEE, K M LEE. Deeply-recursive convolutional network for image super-resolution, 1637-1645(2016).
[12] Y TAI, J YANG, X M LIU. Image super-resolution via deep recursive residual network, 2790-2798(2017).
[13] H KIM et al. Enhanced deep residual networks for single image super-resolution, 1132-1140(2017).
[14] Z HUI, X B GAO, Y C YANG et al. Lightweight image super-resolution with information multi-distillation network, 2024-2032(25).
[15] X T LUO, Y XIE, Y L ZHANG et al.
[16] T TONG, G LI, X J LIU et al. Image super-resolution using dense skip connections, 4809-4817(2017).
[17] Y L ZHANG, Y P TIAN, Y KONG et al. Residual dense network for image super-resolution, 2472-2481(2018).
[18] J KIM, J K LEE, K M LEE. Accurate image super-resolution using very deep convolutional networks, 1646-1654(2016).
[19] T DAI, J R CAI, Y B ZHANG et al. Second-order attention network for single image super-resolution, 11057-11066(2020).
[20] X L WANG, R GIRSHICK, A GUPTA et al. Non-local neural networks, 7794-7803(2018).
[22] C LEDIG, L THEIS, F HUSZÁR et al. Photo-realistic single image super-resolution using a generative adversarial network, 105-114(2017).
[23] J YU, Y FAN, J YANG et al. Wide activation for efficient and accurate image super-resolution. arXiv preprint arXiv, 2018(1808).
[24] C SZEGEDY, W LIU, Y Q JIA et al. Going deeper with convolutions, 1-9(2015).
[25] X LI, W H WANG, X L HU et al. Selective kernel networks, 510-519(2020).
[26] X T WANG, K YU, C DONG et al. Recovering realistic texture in image super-resolution by deep spatial feature transform, 606-615(2018).
[27] R ZEYDE, M ELAD, M PROTTER. On Single Image Scale-up Using Sparse-representations. Curves and Surfaces, 711-730(2012).
[28] D MARTIN, C FOWLKES et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, 416-423(2002).
[29] J B HUANG, A SINGH, N AHUJA. Single image super-resolution from transformed self-exemplars, 5197-5206(2015).
[30] W S LAI, J B HUANG, N AHUJA et al. Deep Laplacian pyramid networks for fast and accurate super-resolution, 5835-5843(2017).
Get Citation
Copy Citation Text
Qiqi KOU, Chao LI, Deqiang CHENG, Liangliang CHEN, Haohui MA, Jianying ZHANG. Image super-resolution reconstruction based on attention and wide-activated dense residual network[J]. Optics and Precision Engineering, 2023, 31(15): 2273
Category: Information Sciences
Received: Nov. 1, 2022
Accepted: --
Published Online: Sep. 5, 2023
The Author Email: KOU Qiqi (kouqiqi@cumt.edu.cn)