Acta Photonica Sinica, Volume. 52, Issue 10, 1052404(2023)
Nearly Perfect Absorber in Borophene Based on Tamm Plasmon Polaritons(Invited)
[1] XIE Zhongjian, MENG Xiangying, LI Xiangnan et al. Two-dimensional borophene: properties, fabrication, and promising applications[J]. Research, 2020, 2624617(2020).
[2] XIE Shengyi, WANG Yeliang, LI Xianbin. Flat boron: a new cousin of graphene[J]. Advanced Materials, 31, e1900392(2019).
[3] NONG Jinpeng, TANG Linlong, LAN Guilian et al. Enhanced graphene plasmonic mode energy for highly sensitive molecular fingerprint retrieval[J]. Laser & Photonics Reviews, 15, 2000300(2020).
[4] CHEN T A, CHUU C P, TSENG C C et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)[J]. Nature, 579, 219-223(2020).
[5] LUO Peng, WEI Wei, LAN Guilian et al. Anisotropic surface plasmon resonance spectroscopy and infrared sensing properties employing graphene-black phosphorus heterostructure (invited)[J]. Acta Photonica Sinica, 50, 1024001(2021).
[6] LI Hongju, REN Yongze, HU Jigang et al. Wavelength-selective wide-angle light absorption enhancement in monolayers of transition-metal dichalcogenides[J]. Journal of Lightwave Technology, 36, 3236-3241(2018).
[7] FENG Baojie, SUGINO O, LIU R Y et al. Dirac fermions in borophene[J]. Physical Review Letters, 118, 096401(2017).
[8] HUANG Yuefei, SHIRODKA S N, YAKOBSON B I. Two-dimensional boron polymorphs for visible range plasmonics: a first-principles exploration[J]. Journal of the American Chemical Society, 139, 17181-17185(2017).
[9] JALALI-MOLA Z, JAFARI S A. Kinked plasmon dispersion in borophene-borophene and borophene-graphene double layers[J]. Physical Review B, 98, 235430(2018).
[10] DERESHGI S A, LIU Z, AYDIN K. Anisotropic localized surface plasmons in borophene[J]. Optics Express, 28, 16725-16739(2020).
[11] NONG Jinpeng, FENG Fu, MIN Changjun et al. Effective transmission modulation at telecommunication wavelengths through continuous metal films using coupling between borophene plasmons and magnetic polaritons[J]. Advanced Optical Materials, 9, 2001809(2021).
[12] NONG Jinpeng, WEI Wei, WANG Wei et al. Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons[J]. Optics Express, 26, 1633-1644(2018).
[13] ZHANG Jun, NONG Jinpeng, FENG Fu et al. Magnetic polaritons assisted effective excitation of multi-order anisotropic borophene surface plasmons in the infrared region[J]. Results in Physics, 29, 104780(2021).
[14] JIAN Ruda, WU Shiwen, ZHAO Bo et al. Tunable multi-peak perfect absorbers based on borophene for high-performance near-infrared refractive index sensing[J]. Optical Materials, 131, 112751(2022).
[15] LUO Guoping, CHEN Xingyuan, HU Sumei et al. Near infrared hot electrons photodetectors based on Tamm plasmons[J]. Acta Photonica Sinica, 51, 0404002(2022).
[16] LU Hua, LI Yangwu, YUE Zengji et al. Topological insulator based Tamm plasmon polaritons[J]. APL Photonics, 4, 040801(2019).
[17] LU Hua, GAN Xuetao, JIA Baohua et al. Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons[J]. Optics Letters, 41, 4743-4746(2016).
[18] LU Hua, GAN Xuetao, MAO Dong et al. Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures[J]. Optics Express, 25, 21630-21636(2017).
[19] DONG Daxing, LIU Youwen, FEI Yue et al. Designing a nearly perfect infrared absorber in monolayer black phosphorus[J]. Applied Optics, 58, 3862-3869(2019).
[20] MAJI P S, DAS R. Absorption enhancement in monolayer graphene using Tamm plasmon polaritons[J]. OSA Continuum, 1, 392(2018).
[21] LU Hua, LI Yangwu, JIAO Han et al. Induced reflection in Tamm plasmon systems[J]. Optics Express, 27, 5383-5392(2019).
[22] LIU Xiaoshan, LIU Guiqiang, TANG Peng et al. Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers[J]. Carbon, 140, 362-367(2018).
[23] FENG Yue, LIU Hai, CHEN Cong et al. Broadband terahertz metamaterial absorber based on patterned graphene[J]. Acta Photonica Sinica, 51, 0923001(2023).
[24] ALI A, SAEED A, HASSAN G et al. Narrow band total absorber at near-infrared wavelengths using monolayer graphene and sub-wavelength grating based on critical coupling[J]. Journal of Lightwave Technology, 36, 5593-5599(2018).
[25] LI Liang, ZHAO Hua, ZHANG Jingwen et al. Tunable Tamm plasmon polaritons and perfect absorption in a metal-PC cavity[J]. Journal of Physics D: Applied Physics, 52, 255105(2019).
[26] LIU Zhengqi, LIU Guiqiang, LIU Xiaoshan et al. Spatial and frequency-selective optical field coupling absorption in an ultra-thin random metasurface[J]. Optics Letters, 48, 1586-1589(2023).
[27] YU Tong, ZHANG Cheng, LIU Huimin et al. Planar, narrowband, and tunable photodetection in the near-infrared with Au/TiO2 nanodiodes based on Tamm plasmons[J]. Nanoscale, 11, 23182-23187(2019).
[28] LEE C, LEE Y K, PARK Y et al. Polarization effect of hot electrons in tandem-structured plasmonic nanodiode[J]. ACS Photonics, 5, 3499-3506(2018).
Get Citation
Copy Citation Text
Xiaojian ZHANG, Quan ZHANG, Guilian LAN, Peng LUO, Wei WEI. Nearly Perfect Absorber in Borophene Based on Tamm Plasmon Polaritons(Invited)[J]. Acta Photonica Sinica, 2023, 52(10): 1052404
Category:
Received: Jul. 3, 2023
Accepted: Sep. 7, 2023
Published Online: Dec. 5, 2023
The Author Email: Wei WEI (wwei@cqu.edu.cn)