Journal of Synthetic Crystals, Volume. 52, Issue 8, 1413(2023)

Two-Dimensional Kagome Magnetic Material Fe3As with Large Magnetic Anisotropy and High Curie Temperature

HUANG Tian1...2, MA Sai1,2, LIU Xiaoyu1,2, LI Ying1,2, WU Hong1,2, XU Yongbing2, WEI Lujun1,2, LI Feng1,2, and PU Yong12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(39)

    [1] [1] MIELKE A. Exact ground states for the Hubbard model on the Kagome lattice[J]. Journal of Physics A: Mathematical and General, 1992, 25(16): 4335-4345.

    [2] [2] BRUCH L W. Band-structure effects in the specific heat of helium adsorbed on graphite: perturbation theory[J]. Physical Review B, 1981, 23(12): 6801-6804.

    [3] [3] CASTRO NETO A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162.

    [4] [4] ZHOU S Y, GWEON G H, GRAF J, et al. First direct observation of Dirac fermions in graphite[J]. Nature Physics, 2006, 2(9): 595-599.

    [5] [5] MIELKE A. Ferromagnetic ground states for the Hubbard model on line graphs[J]. Journal of Physics A: Mathematical and General, 1991, 24(2): L73-L77.

    [6] [6] MIYAHARA S, KUSUTA S, FURUKAWA N. BCS theory on a flat band lattice[J]. Physica C: Superconductivity, 2007, 460/461/462: 1145-1146.

    [7] [7] SUN K, GU Z C, KATSURA H, et al. Nearly flatbands with nontrivial topology[J]. Physical Review Letters, 2011, 106(23): 236803.

    [8] [8] TANG E, MEI J W, WEN X G. High-temperature fractional quantum Hall states[J]. Physical Review Letters, 2011, 106(23): 236802.

    [9] [9] WU C J, BERGMAN D, BALENTS L, et al. Flat bands and Wigner crystallization in the honeycomb optical lattice[J]. Physical Review Letters, 2007, 99(7): 070401.

    [10] [10] IMADA M, KOHNO M. Superconductivity from flat dispersion designed in doped Mott insulators[J]. Physical Review Letters, 2000, 84(1): 143-146.

    [11] [11] WANG X, DU K, LIU Y Y F, et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals[J]. 2D Materials, 2016, 3(3): 031009.

    [12] [12] LI X X, YANG J L. First-principles design of spintronics materials[J]. National Science Review, 2016, 3(3): 365-381.

    [13] [13] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [14] [14] CARVALHO A, WANG M, ZHU X, et al. Phosphorene: from theory to applications[J]. Nature Reviews Materials, 2016, 1: 16061.

    [15] [15] SUN Q L, DAI Y, MA Y D, et al. Lateral heterojunctions within monolayer h-BN/graphene: a first-principles study[J]. RSC Advances, 2015, 5(42): 33037-33043.

    [16] [16] HU J, WANG P, ZHAO J J, et al. Engineering magnetic anisotropy in two-dimensional magnetic materials[J]. Advances in Physics: X, 2018, 3(1): 1432415.

    [17] [17] YIN J X, ZHANG S S, LI H, et al. Giant and anisotropic many-body spin-orbit tunability in a strongly correlated Kagome magnet[J]. Nature, 2018, 562(7725): 91-95.

    [18] [18] YE L D, KANG M G, LIU J W, et al. Massive Dirac fermions in a ferromagnetic Kagome metal[J]. Nature, 2018, 555(7698): 638-642.

    [19] [19] DAALDEROP G H O, KELLY P J, SCHUURMANS M F H. First-principles calculation of the magnetocrystalline anisotropy energy of iron, cobalt, and nickel[J]. Physical Review B, 1990, 41(17): 11919-11937.

    [20] [20] WANG B, ZHANG Y H, MA L A, et al. MnX (X = P, As) monolayers: a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy[J]. Nanoscale, 2019, 11(10): 4204-4209.

    [21] [21] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1992, 46(11): 6671-6687.

    [22] [22] BLCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.

    [23] [23] KRESSE G, FURTHMLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.

    [24] [24] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

    [25] [25] ZHENG S A, HUANG C X, YU T, et al. High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy[J]. The Journal of Physical Chemistry Letters, 2019, 10(11): 2733-2738.

    [26] [26] JIANG P H, WANG C, CHEN D C, et al. Stacking tunable interlayer magnetism in bilayer CrI3[J]. Physical Review B, 2019, 99(14): 144401.

    [27] [27] NOS S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519.

    [28] [28] TOGO A, TANAKA I. First principles phonon calculations in materials science[J]. Scripta Materialia, 2015, 108: 1-5.

    [29] [29] ZHANG Y H, WANG B, GUO Y L, et al. A universal framework for metropolis Monte Carlo simulation of magnetic Curie temperature[J]. Computational Materials Science, 2021, 197: 110638.

    [30] [30] KARIGERASI M H, KANG K, GRANROTH G E, et al. Strongly two-dimensional exchange interactions in the in-plane metallic antiferromagnet Fe2As probed by inelastic neutron scattering[J]. Physical Review Materials, 2020, 4(11): 114416.

    [31] [31] YANG K X, KANG K, DIAO Z, et al. Magneto-optic response of the metallic antiferromagnet Fe2As to ultrafast temperature excursions[J]. Physical Review Materials, 2019, 3(12): 124408.

    [32] [32] YU J A, LE C C, LI Z W, et al. Author correction: coexistence of ferromagnetism, antiferromagnetism, and superconductivity in magnetically anisotropic (Eu, La)FeAs2[J]. NPJ Quantum Materials, 2021, 6: 67.

    [33] [33] ZHANG B J, LIU K, LU Z Y. Tuning the magnetism of the top-layer FeAs on BaFe2As2(001): first-principles study[J]. Physical Review B, 2018, 97(16): 165105.

    [34] [34] MARCK STEVEN C van der. Site percolation and random walks on d-dimensional Kagomé lattices[J]. Journal of Physics A: Mathematical and General, 1998, 31(15): 3449-3460.

    [35] [35] SCHLICKUM U, DECKER R, KLAPPENBERGER F, et al. Chiral Kagomé lattice from simple ditopic molecular bricks[J]. Journal of the American Chemical Society, 2008, 130(35): 11778-11782.

    [36] [36] HAYNES T D, MASKERY I, BUTCHERS M W, et al. Ferrimagnetism in Fe-rich NbFe2[J]. Physical Review B, 2012, 85(11): 115137.

    [37] [37] SUN Y J, ZHUO Z W, WU X J, et al. Room-temperature ferromagnetism in two-dimensional Fe2Si nanosheet with enhanced spin-polarization ratio[J]. Nano Letters, 2017, 17(5): 2771-2777.

    [38] [38] XU Z M, ZHU H. Two-dimensional manganese nitride monolayer with room temperature rigid ferromagnetism under strain[J]. The Journal of Physical Chemistry C, 2018, 122(26): 14918-14927.

    [39] [39] ZHAO T S, ZHOU J A, WANG Q A, et al. Ferromagnetic and half-metallic FeC2 monolayer containing C2 dimers[J]. ACS Applied Materials & Interfaces, 2016, 8(39): 26207-26212.

    Tools

    Get Citation

    Copy Citation Text

    HUANG Tian, MA Sai, LIU Xiaoyu, LI Ying, WU Hong, XU Yongbing, WEI Lujun, LI Feng, PU Yong. Two-Dimensional Kagome Magnetic Material Fe3As with Large Magnetic Anisotropy and High Curie Temperature[J]. Journal of Synthetic Crystals, 2023, 52(8): 1413

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 12, 2023

    Accepted: --

    Published Online: Oct. 28, 2023

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics