Journal of Synthetic Crystals, Volume. 49, Issue 6, 947(2020)
Brief Review of Lithium Niobate Crystal and Its Applications
[1] [1] Nassau K, Levinstein H J. Ferroelectric behavior of lithium niobate[J].Applied Physics Letters,1965,7(3): 69-70.
[2] [2] Smolenskii G A, Krainik N N, Khuchua N P, et al. The curie temperature of LiNbO3[J].Physica Status Solidi B-basic Solid State Physics,1966,13(2): 309-314.
[3] [3] Wemple S H, Didomenico M, Camlibel I, et al. Relationship between linear and quadratic electro-optic coefficients in LiNbO3, LiTaO3, and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization[J].Applied Physics Letters,1968,12(6): 209-211.
[4] [4] Boyd G D, Miller R C, Nassau K, et al. LiNbO3: an efficient phase matchable nonlinear optical material[J].Applied Physics Letters,1964,5(11): 234-236.
[5] [5] Burrows L. Now entering, lithium niobate valley [EB/OL].https: //www.seas.harvard.edu/news/2017/12/now-entering-lithium-niobate-valley,2017-12-21.
[6] [6] Zachariasen W H. Norske videnskapsselsk. Skr.[J].Ada., Oslo, Mat. Naturv,1928,4.
[7] [7] Lapitskii A V, Simanov Y P. Lithium metaniobate and metatantalate[J].Russian Journal of Physical Chemistry A,1955, 29.
[8] [8] Reisman A, Holtzberg F. Heterogeneous equilibria in the systems Li2O-, Ag2O-Nb2O5 and oxide-models[J].Journal of the American Chemical Society,1958,80(24): 6503-6507.
[9] [9] Reisman A, Holtzberg F, Banks E, et al. Reactions of the group VB pentoxides with alkali oxides and carbonates. VII. heterogeneous equilibria in the system Na2O or Na2CO3-Nb2O5[J].Journal of the American Chemical Society,1958,80(1): 37-42.
[10] [10] Lerner P, Legras C, Dumas J P. Stoechiométrie des monocristaux de métaniobate de lithium[J].Journal of Crystal Growth,1968,3: 231-235.
[11] [11] Scott B A, Burns G. Determination of Stoichiometry variations in LiNbO3 and LiTaO3 by Raman powder spectroscopy[J].Journal of the American Ceramic Society,1972,55(5): 225-230.
[12] [12] Svaasand L O, Eriksrud M, Nakken G, et al. Solid-solution range of LiNbO3[J].Journal of Crystal Growth,1974,22(3): 230-232.
[13] [13] Holman R L. Diffusion crucible and slab member with common metal component in the vapor phase: U.S. Patent 4,071,323[P].1978-1-31.
[14] [14] Midwinter J E. Assessment of lithium-meta-niobate for nonlinear optics[J].Applied Physics Letters,1967,11(4): 128-130.
[15] [15] Abrahams S C, Hamilton W C, Reddy J M. Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24℃[J].Journal of Physics & Chemistry of Solids,1966,27(6-7): 1013-1018.
[16] [16] Abrahams S C, Buehler E, Hamilton W C, et al. Ferroelectric lithium tantalate—III. Temperature dependence of the structure in the ferroelectric phase and the para-electric structure at 940°K[J].Journal of Physics and Chemistry of Solids,1973,34(3): 521-532.
[17] [17] Weis R S, Gaylord T K. Lithium niobate: summary of physical properties and crystal structure[J].Applied Physics A,1985,37(4): 191-203.
[18] [18] Fay H, Alford W J, Dess H M, et al. Dependence of second-harmonic phase-matching temperature in LiNbO3 crystals on melt composition[J].Applied Physics Letters,1968,12(3): 89-92.
[19] [19] Peterson G E, Carnevale A. 93Nb NMR linewidths in nonstoichiometric lithium niobate[J].The Journal of Chemical Physics,1972,56(10): 4848-4851.
[20] [20] Abrahams S C, Marsh P. Defect structure dependence on composition in lithium niobate[J].Acta Crystallographica Section B: Structural Science,1986,42(1): 61-68.
[21] [21] Smyth D M. Defects and transport in LiNbO3[J].Ferroelectrics,1983,50(1): 93-102.
[22] [22] Iyi N, Kitamura K, Izumi F, et al. Comparative study of defect structures in lithium niobate with different compositions[J].Journal of Solid State Chemistry,1992,101(2): 340-352.
[23] [23] Kong Y, Xu J, Chen X, et al. Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra[J].Journal of Applied Physics,2000,87(9): 4410-4414.
[24] [24] Nassau K, Levinstein H J, Loiacono G M. Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching[J].Journal of Physics and Chemistry of Solids,1966,27(6-7): 983-988
[25] [25] Brainerd J G, Jensen A G, Cumming L G, et al. Standards on piezoelectric crystals[J].Proc. IRE,1949,37(12): 1378-1395.
[27] [27] Ashkin A, Boyd G D, Dziedzic J M, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J].Applied Physics Letters,1966,9(1): 72-74.
[28] [28] Chen C T, Kim D, Linde D. Efficient pulsed photorefractive process in LiNbO3∶Fe for optical storage and deflection[J].IEEE Journal of Quantum Electronics,1980,16(2): 126-129.
[29] [29] Krtzig E. Photorefractive effects and photoconductivity in LiNbO3∶Fe[J].Ferroelectrics,1978,21(1): 635-636.
[30] [30] Buse K, Jermann F, Kratzig E, et al. Infrared holographic recording in LiNbO3∶Fe and LiNbO3∶Cu[J].Optical Materials,1995: 237-240.
[31] [31] Prieto C, Zaldo C. Determination of the lattice site of Fe in photorefractive LiNbO3[J].Solid state communications,1992,83(10): 819-821.
[32] [32] Buse K, Adibi A, Psaltis D, et al. Non-volatile holographic storage in doubly doped lithium niobate crystals[J].Nature,1998,393(6686): 665-668.
[33] [33] Zhang G Y, Xu J, Liu S, et al. Study of resistance against photorefractive light-induced scattering in LiNbO3∶Fe,Mg crystals[J].Proceedings of SPIE-The International Society for Optical Engineering,1995,2529: 14-17.
[34] [34] Zhang G, Sun Q, Xu J, et al. Fanning: noise-free double doped photorefractive LiNbO3 crystals used for 3D storage[J].Proceedings of SPIE-The International Society for Optical Engineering,1996,2849: 151-154.
[35] [35] Zheng D, Kong Y, Liu S, et al. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals[J].Scientific Reports,2016,6(1): 20308-20308.
[36] [36] Kong Y, Liu F, Tian T, et al. Fast responsive nonvolatile holographic storage in LiNbO3 triply doped with Zr, Fe, and Mn[J].Optics Letters,2009,34(24): 3896-3898.
[37] [37] Xu J, Zhang G, Li F, et al. Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals.[J].Optics Letters,2000,25(2): 129-131.
[38] [38] Lamarque T, Nicolaus R, Loiseaux B, et al. Programmable 2D laser marking device based on a pulsed UV image coherent amplifier[J].Proceedings of SPIE-The International Society for Optical Engineering,2003,5063: 386-388.
[39] [39] Zhong J G, Jian J, Wu Z K. Measurement of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO[C].Proceedings of the 11th International Quantum Electronics Conference IEEE. NewYork,1980.
[40] [40] Volk T R, Pryalkin V I, Rubinina N M. Optical-damage-resistant LiNbO3∶Zn crystal[J].Optics Letters,1990,15(18): 996-998.
[41] [41] Yamamoto J K, Kitamura K, Iyi N, et al. Increased optical damage resistance in Sc2O3-doped LiNbO3[J].Applied Physics Letters,1992,61(18): 2156-2158.
[42] [42] Kong Y, Wen J, Wang H, et al. New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3∶In[J].Applied Physics Letters,1995,66(3): 280-281.
[44] [44] Schmidt R V, Kaminow I P. Metal-diffused optical waveguides in LiNbO3[J].Applied Physics Letters,1974,25(8): 458-460.
[45] [45] Jackel J L, Rice C E, Veselka J J. Proton exchange for high-index waveguides in LiNbO3[J].Applied Physics Letters,1982,41(7): 607-608.
[46] [46] Voskresenskii V M, Starodub O R, Sidorov N V, et al. Modeling of cluster formation in nonlinear optical lithium niobate crystal[J].Crystallography Reports,2011,56(2): 221-226.
[47] [47] Palatnikov M N, Biryukova I V, Sidorov N V, et al. Growth and concentration dependencies of rare-earth doped lithium niobate single crystals[J].Journal of Crystal Growth,2006,291(2): 390-397.
[48] [48] Hempstead M, Wilkinson J S, Reekie L, et al. Waveguide lasers operating at 1 084 nm in neodymium-diffused lithium niobate[J].IEEE Photonics Technology Letters,1992,4(8): 852-855.
[49] [49] Lallier E, Pocholle J P, Papuchon M, et al.Laser oscillation of single-mode channel waveguide in Nd∶MgO∶LiNbO3[J].Electronics Letters,1989,25(22): 1491-1492.
[50] [50] Fujimura M, Tsugawa H, Khan M S, et al. Nd-diffused Ti∶LiNbO3 z-propagation waveguide Q-switched lasers[J].Electronics Letters,1998,34(13): 1319-1321.
[51] [51] Brüske D, Suntsov S, Rüter C E, et al.Efficient ridge waveguide amplifiers and lasers in Er-doped lithium niobate by optical grade dicing and three-side Er and Ti in-diffusion[J].Optics Express,2017,25(23): 29374-29379.
[52] [52] Brüske D, Suntsov S, Rüter C E, et al.Efficient Nd∶Ti∶LiNbO3 ridge waveguide lasers emitting around 1 085 nm[J].Optics Express,2019,27(6): 8884-8889.
[53] [53] Jechow A, Schedel M, Stry S, et al. Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm[J].Optics Letters,2007,32(20): 3035-3037.
[55] [55] Gopalan, Venkatraman, Mitchell, et al. The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals[J].Applied Physics Letters,1998,72(16): 1981-1983.
[56] [56] Liu X, Terabe K, Kitamura K, et al. Ferroelectric nanodomain properties in near-stoichiometric and congruent LiNbO3 crystals investigated by scanning force microscopy[J].Japanese Journal of Applied Physics,2005,44(9): 7012-7014.
[57] [57] Shoji I, Kondo T, Kitamoto A, et al. Absolute scale of second-order nonlinear-optical coefficients[J].Journal of The Optical Society of America B-optical Physics,1997,14(9): 2268-2294.
[58] [58] Kong Y, Li B, Chen Y, et al. The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold[C].Photorefractive Effects, Materials, and Devices,2003.
[59] [59] Fischer C, Whlecke M, Volk T, et al. Influence of the Damage Resistant Impurities Zn and Mg on the UV-Excited Luminescence in LiNbO3[J].Physica Status Solidi(a),1993,137(1): 247-255.
[60] [60] Shoji I, et al. Properties of Stoichiometric LiNbO3[EB/OL].https: //www.opt-oxide.com/v2019/wp-content/uploads/2013/03/SLN_eng.pdf,2013-03-01.
[61] [61] Polgár K, Péter, Kovács L, et al. Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method[J].Journal of Crystal Growth,1997,177(3-4): 211-216.
[62] [62] Czochralski J. Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle[J].Zeitschrift für Physikalische Chemie,1918: 219-221.
[63] [63] Ballman A A. Growth of piezoelectric and ferroelectric materials by the CzochraIski technique[J].Journal of the American Ceramic Society,1965,48(2): 112-113.
[64] [64] Byer R L, Young J F, Feigelson R S. Growth of high-quality LiNbO3 crystals from the congruent melt[J].Journal of Applied Physics,1970,41(6): 2320-2325.
[65] [65] Carruthers J R, Peterson G E, Grasso M, et al. Nonstoichiometry and crystal growth of lithium niobate[J].Journal of Applied Physics,1971,42(5): 1846-1851.
[66] [66] Shigematsu K, Anzai Y, Morita S, et al. Growth conditions of subgrain-free LiNbO3 single crystals by the Czochralski method[J].Japanese Journal of Applied Physics,1987,26(12): 1988-1996.
[69] [69] Matthes H. Growth of barium-lithium niobate single crystals by the czochralski method[J].Journal of Crystal Growth,1972,15(2): 157-158.
[70] [70] Azarbayejani G H. Growth twinning in c-axis LiNbO3 crystals[J].Journal of Crystal Growth,1970,7(3): 327-328.
[77] [77] Fukuda T, Hirano H. Growth and characteristics of LiNbO3 plate crystals[J].Materials Research Bulletin,1975,10(8): 801-806.
[79] [79] Kitamura K, Yamamoto J K, Iyi N, et al. Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system[J].Journal of crystal growth,1992,116(3-4): 327-332.
[80] [80] Furukawa Y, Sato M, Kitamura K, et al. Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method[J].Journal of Crystal Growth,1993,128(1-4): 909-914.
[81] [81] Kitamura K, Furukawa Y, Iyi N. Progress in single crystal growth of LiNbO3 using double crucible czochralski method[J].Ferroelectrics,1997,202(1): 21-28.
[82] [82] Sun J, Kong Y, Zhang L, et al. Growth of large-diameter nearly stoichiometric lithium niobate crystals by continuous melt supplying system[J].Journal of crystal growth,2006,292(2): 351-354.
[83] [83] Kong Y, Sun J, Zhang L, et al. The growth of large-diametered nearly stoichiometric lithium niobate crystals by double crucible technique[C].Photorefractive Effects, Materials, and Devices. Optical Society of America,2005: 50.
[84] [84] Zheng Y, Shi E, Wang S, et al. Domain structures and etching morphologies of lithium niobate crystals with different Li contents grown by TSSG and double crucible Czochralski method[J].Crystal Research and Technology: Journal of Experimental and Industrial Crystallography,2004,39(5): 387-395.
[86] [86] Oxide, Nonlinear Optical Crystals-Mg: SLN / Mg: CLN[EB/OL]. https: //www.opt-oxide.com/products/sln/,2019-01-01.
[87] [87] Malovichko G I, Grachev V G, Yurchenko L P, et al. Improvement of LiNbO3 microstructure by crystal growth with potassium[J].Physica Status Solidi(a),1992,133(1): K29-K32.
[88] [88] Malovichko G I, Grachev V G, Kokanyan E P, et al. Characterization of stoichiometric LiNbO3 grown from melts containing K2O[J].Applied Physics A,1993,56(2): 103-108.
[89] [89] Polgár K, Péter , Kovács L. Crystal growth and stoichiometry of LiNbO3 prepared by the flux method[J].Optical Materials,2002,19(1): 7-11.
[91] [91] Holman R L, Cressman P J, Revelli J F. Chemical control of optical damage in lithium niobate[J].Applied Physics Letters,1978,32(5): 280-283.
[92] [92] Jundt D H, Fejer M M, Norwood R G, et al. Composition dependence of lithium diffusivity in lithium niobate at high temperature[J].Journal of applied physics,1992,72(8): 3468-3473.
[93] [93] Liang X, Xuewu X, Tow-Chong C, et al. Lithium in-diffusion treatment of thick LiNbO3 crystals by the vapor transport equilibration method[J].Journal of Crystal Growth,2004,260(1-2): 143-147.
[97] [97] Curtis B J, Brunner H R. The growth of thin films of lithium niobate by chemical vapour de position[J].Materials Research Bulletin,1975,10(6): 515-520.
[98] [98] Nunomura K, Ishitani A, Matsubara T, et al. Second harmonic generation in a sputtered LiNbO3 film on MgO[J].Journal of Crystal Growth,1978,45: 355-360.
[99] [99] Betts R A, Pitt C W. Growth of thin-film lithium niobate by molecular beam epitaxy[J].Electronics Letters,1985,21(21): 960-962.
[100] [100] Partlow D P, Greggi J. Properties and microstructure of thin LiNbO3 films prepared by a sol-gel process[J].Journal of Materials Research,1987,2(5): 595-605.
[101] [101] Yanovskaya M I, Turevskaya E P, Leonov A P, et al. Formation of LiNbO3 powders and thin-films by hydrolysis of metal alkoxides[J].Journal of Materials Science,1988,23(2): 395-399.
[102] [102] Rabson T A, Baumann R C, Rost T A. Thin film lithium niobate on silicon[J].Ferroelectrics,1990,112(1): 265-271.
[103] [103] Shibata Y, Kaya K, Akashi K, et al. Epitaxial growth of LiNbO3 thin films by excimer laser ablation method and their surface acoustic wave properties[J].Applied Physics Letters,1992,61(8): 1000-1002.
[104] [104] Kim D, Oh S, Lee S, et al. Structural and optical properties of LiNbO3 films grown by pulsed laser deposition with a shadow mask[J].Japanese Journal of Applied Physics,1998,37(4): 2016-2020.
[105] [105] Lansiaux X, Dogheche E, Remiens D, et al. LiNbO3 thick films grown on sapphire by using a multistep sputtering process[J].Journal of Applied Physics,2001,90(10): 5274-5277.
[106] [106] Ishihara M, Nakamura T, Kokai F, et al. Preparation of lithium niobate thin films on diamond-coated silicon substrate for surface acoustic devices[J].Diamond and Related Materials,2003,12(10): 1809-1813.
[107] [107] Levy M, Osgood Jr R M, Liu R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J].Applied Physics Letters,1998,73(16): 2293-2295.
[108] [108] Pastureaud T, Solal M, Biasse B, et al. High-frequency surface acoustic waves excited on thin-oriented LiNbO3 single-crystal layers transferred onto silicon[J].IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2007,54(4): 870-876.
[109] [109] Rabiei P, Gunter P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J].Applied Physics Letters,2004,85(20): 4603-4605.
[110] [110] Hu H, Ricken R, Sohler W. Large area, crystal-bonded LiNbO3 thin films and ridge waveguides of high refractive index contrast[J].2009.
[111] [111] Hu H, Gui L, Ricken R, et al. Towards nonlinear photonic wires in lithium niobate[C].Integrated Optics: Devices, Materials, and Technologies XIV. International Society for Optics and Photonics,2010,7604: 76040R.
[113] [113] Yang Y, Lu R, Gong S, et al. Scaling acoustic filters towards 5G[C].International Electron Devices Meeting,2018: 39.6. 1-39.6. 4.
[114] [114] Yang Y, Lu R, Manzaneque T, et al. Toward Ka band acoustics: lithium niobate asymmetrical mode piezoelectric MEMS resonators[C].International Frequency Control Symposium,2018: 1-5.
[115] [115] Yang Y, Lu R, Gao L, et al. A C-band lithium niobate MEMS filter with 10% fractional bandwidth for 5G front-ends[C].International Ultrasonics Symposium,2019: 1981-1984.
[116] [116] Poberaj G, Hu H, Sohler W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J].Laser & Photonics Reviews,2012,6(4): 488-503.
[117] [117] Zhang M, Wang C, Cheng R, et al. Monolithic ultra-high-Q lithium niobate microring resonator[J].Optica,2017,4(12): 1536-1537.
[118] [118] Wang C, Zhang M, Stern B, et al. Nanophotonic lithium niobate electro-optic modulators[J].Optics Express,2018,26(2): 1547-1555.
[119] [119] Haggerty J S. Production of fibers by a floating zone fiber drawing technique[J].1972.
[120] [120] Fejer M M, Nightingale J L, Magel G A, et al. Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers[J].Review of Scientific Instruments,1984,55(11): 1791-1796.
[121] [121] Luh Y S, Fejer M M, Byer R L, et al. Stoichiometric LiNbO3 single-crystal fibers for nonlinear optical applications[J].Journal of Crystal Growth,1987,85(1-2): 264-269.
[122] [122] Magel G A, Lim E J, Fejer M M, et al. Second harmonic generation in periodically-poled LiNbO3[J].Optics News,1989,15(12): 20-21.
[123] [123] Fejer M M, Yoo S J B, Byer R L, et al. Electric field dependence of optical absorption near the band gap of quantum-well structure[J].Phys. Rev. Lett.,1989,62(5): 1041-1045.
[124] [124] Foulon G, Ferriol M, Brenier A, et al. Laser heated pedestal growth and optical properties of Yb3+-doped LiNbO3 single crystal fibers[J].Chemical Physics Letters,1995,245(6): 555-560.
[125] [125] Yin S. Lithium niobate fibers and waveguides: fabrications and applications[J].Proceedings of the IEEE,1999,87(11): 1962-1974.
[126] [126] Oguri H, Yamamura H, Orito T. Growth of MgO doped LiNbO3 single crystal fibers by a novel drawing down method[J].Journal of Crystal Growth,1991,110(4): 669-676.
[127] [127] Ohnishi N, Yao T. A novel growth technique for single-crystal fibers: the micro-Czochralski (μ-CZ) method[J].Japanese Journal of Applied Physics,1989,28(2A): L278.
[128] [128] Zhong H, Hou Y, Quan N, et al. Growth of lithium niobate single crystal fiber by an edge-defined, film-fed growth method[J].Crystal Research and Technology,1991,26(4): 395-399.
[129] [129] Murata, Product information[EB/OL].https: //www.murata.com/,2017-08-09.
[130] [130] Lewis M F. An improvement to SAW devices on lithium niobate[J].IEEE Transactions on Sonics and Ultrasonics,1982,29(1): 52-54.
[131] [131] Standifer E M, Jundt D H, Norwood R G, et al. Chemically reduced lithium niobate single crystals: processing, properties and improvements in SAW device fabrication and performance[C].International Frequency Control Symposium,1998: 470-472.
[132] [132] Photonics. Product[EB/OL].https: //photonics.ixblue.com/,2020-06-29.
[133] [133] Armstrong J A, Bloembergen N, Ducuing J, et al. Interactions between light waves in a nonlinear dielectric[J].Physical Review,1962,127(6): 1918-1939.
[134] [134] Camlibel I. Spontaneous polarization measurements in several ferroelectric oxides using a pulsed-field method[J].Journal of Applied Physics,1969,40(4): 1690-1693.
[135] [135] Feng D, Ming N B, Hong J F, et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J].Applied Physics Letters,1980,37(7): 607-609.
[136] [136] Ming N B, Hong J, Feng D, et al. The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals[J].Journal of Materials Science,1982,17(6): 1663-1670.
[137] [137] Yamada M, Nada N, Saitoh M, et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation[J].Applied Physics Letters,1993,62(5): 435-436.
[138] [138] Covesion. Covesion poling technology provides a versatile basis for the design and manufacture of unique PPLN crystals[EB/OL]. https: //www.covesion.com/products/custom-ppln-crystals.html,2020-06-25.
[139] [139] Ming N B, Zhu Y Y, Feng D. Ferroelectric crystals with periodic laminar domains as the micron superlattices for optic acoustic processes[J].Ferroelectrics,1990,106(1): 99-104.
[140] [140] Feng D, Zhu Y Y, Ming N. Harmonic generations in an optical Fibonacci superlattice[J].Physical Review B,1990,41(9): 5578.
[141] [141] Zhu Y, Zhu S, Hong J, et al. Domain inversion in LiNbO3 by proton exchange and quick heat treatment[J].Applied Physics Letters,1994,65(5): 558-560.
[142] [142] Zhu S, Zhu Y, Zhang Z, et al. LiTaO3 crystal periodically poled by applying an external pulsed field[J].Journal of Applied Physics,1995,77(10): 5481-5483.
[143] [143] Zhu S, Zhu Y, Ming N. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J].Science,1997,278(5339): 843-846.
[144] [144] Zhu Y, Xiao R F, Fu J S, et al. Third harmonic generation through coupled second-order nonlinear optical parametric processes in quasiperiodically domain-inverted Sr0.6Ba0.4Nb2O6 optical superlattices[J].Applied Physics Letters,1998,73(4): 432-434.
[145] [145] Liu Z W, Zhu S N, Zhu Y Y, et al. A scheme to realize three-fundamental-colors laser based on quasi-phase matching[J].Solid State Communications,2001,119(6): 363-366.
[146] [146] Zhu S, He J, Zhu Y, et al. Design of optical superlattice to realize third-harmonic generation and multi-wavelength laser output and its application in the all-solid state laser[P]. U.S. Patent: 6,714,569. 2004-3-30.
[147] [147] Jin H, Liu F, Xu P, et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits[J].Physical Review Letters,2014,113(10): 103601.
[148] [148] Wei D, Wang C, Wang H, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J].Nature Photonics,2018,12(10): 596-600.
[149] [149] Xu T, Switkowski K, Chen X, et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate[J].Nature Photonics,2018,12(10): 591-595.
[150] [150] Wei D, Wang C, Xu X, et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals[J].Nature Communications,2019,10(1): 1-7.
[151] [151] Kimura T, Omura M, Kishimoto Y, et al. Applicability Investigation of SAW Devices in the 3 to 5 GHz range[C].international microwave symposium,2018: 846-848.
[152] [152] Lu R, Manzaneque T, Yang Y, et al. Towards digitally addressable delay synthesis: ghz low-loss acoustic delay elements from 20 NS to 900 NS[C].international conference on micro electro mechanical systems,2019: 121-124.
[153] [153] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J].Nature,2018,562(7725): 101-104.
[154] [154] He M, Xu M, Ren Y, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbits-1 and beyond[J].Nature Photonics,2019,13(5): 359-364.
[155] [155] Lu C, Zhu B, Zhu C, et al. All-optical logic gates and a half-adder based on lithium niobate photonic crystal micro-cavities[J].Chinese Optics Letters,2019,17(7): 072301.
[156] [156] Wooten E, Kissa K, Yiyan A, et al. A review of lithium niobate modulators for fiber-optic communications systems[J].IEEE Journal of Selected Topics in Quantum Electronics,2000,6(1): 69-82.
[157] [157] Boes A, Corcoran B, Chang L, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J].Laser & Photonics Reviews,2018,12(4): 1700256.
[158] [158] Gao B, Ren M, Wu W, et al. Lithium niobate metasurfaces[J].Laser & Photonics Reviews,2019,13(5): 1800312.
Get Citation
Copy Citation Text
SUN Jun, HAO Yongxin, ZHANG Ling, XU Jingjun, ZHU Shining. Brief Review of Lithium Niobate Crystal and Its Applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947