Laser & Optoelectronics Progress, Volume. 57, Issue 9, 091602(2020)

Calculation of Conduction Band Structure Tensile Strained Ge1-xSnx Alloys for Achieving Direct Band Gap Materials

Qinqin Sun1 and Shihao Huang2,3、*
Author Affiliations
  • 1School of Applied Technology, Fujian University of Technology, Fuzhou, Fujian 350118, China
  • 2School of Information Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
  • 3Research Center for Microelectronics Technology, Fujian University of Technology, Fuzhou, Fujian 350118, China
  • show less
    References(24)

    [1] Su S J, Zhang D L, Zhang G Z et al. High-quality Ge1-xSnx alloys grown on Ge(001) substrates by molecular beam epitaxy[J]. Acta Physica Sinica, 62, 058101(2013).

    [2] Wirths S. Geiger R, von den Driesch N, et al. Lasing in direct-bandgap GeSn alloy grown on Si[J]. Nature Photonics, 9, 88-92(2015).

    [3] Al-Kabi S, Ghetmiri S A, Margetis J et al. An optically pumped 2.5 μm GeSn laser on Si operating at 110 K[J]. Applied Physics Letters, 109, 171105(2016).

    [4] Liu Z, Cong H, Yang F et al. Defect-free high Sn-content GeSn on insulator grown by rapid melting growth[J]. Scientific Reports, 6, 38386(2016).

    [5] Stange D, Wirths S, Geiger R et al. Optically pumped GeSn microdisk lasers on Si[J]. ACS Photonics, 3, 1279-1285(2016).

    [6] Margetis J, Al-Kabi S, Du W et al. Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K[J]. ACS Photonics, 5, 827-833(2018).

    [7] Huang B J, Chang C Y, Hsieh Y D et al. Electrically injected GeSn vertical-cavity surface emitters on silicon-on-insulator platforms[J]. ACS Photonics, 6, 1931-1938(2019).

    [8] Wang X H, Chen C Z, Feng S Q et al. A hybrid functional first-principles study on the band structure of non-strained Ge1-xSnx alloys[J]. Chinese Physics B, 26, 127402(2017).

    [9] Polak M P, Scharoch P, Kudrawiec R. The electronic band structure of Ge1-xSnx in the full composition range: indirect, direct, and inverted gaps regimes, band offsets, and the Burstein-Moss effect[J]. Journal of Physics D: Applied Physics, 50, 195103(2017).

    [10] Huang W Q, Cheng B W, Xue C L et al. Comparative studies of band structures for biaxial (100)-, (110)-, and (111)-strained GeSn: a first-principles calculation with GGA+U approach[J]. Journal of Applied Physics, 118, 165704(2015).

    [11] Gupta S, Magyari-Köpe B, Nishi Y et al. Achieving direct band gap in germanium through integration of Sn alloying and external strain[J]. Journal of Applied Physics, 113, 073707(2013).

    [12] Liu S Q, Yen S T. Extraction of eight-band k·p parameters from empirical pseudopotentials for GeSn[J]. Journal of Applied Physics, 125, 245701(2019).

    [13] Attiaoui A, Moutanabbir O. Indirect-to-direct band gap transition in relaxed and strained Ge1-x-ySixSny ternary alloys[J]. Journal of Applied Physics, 116, 063712(2014).

    [14] Moontragoon P. Ikoni Z, Harrison P. Band structure calculations of Si-Ge-Sn alloys: achieving direct band gap materials[J]. Semiconductor Science and Technology, 22, 742-748(2007).

    [15] Song Z G, Fan W J, Tan C S et al. Band structure of Ge1-xSnx alloy: a full-zone 30-band k · p model[J]. New Journal of Physics, 21, 073037(2019).

    [16] Zhang Q F, Liu Y, Han G Q et al. Theoretical analysis of performance enhancement in GeSn/SiGeSn light-emitting diode enabled by Si3N4 liner stressor technique[J]. Applied Optics, 55, 9668-9674(2016).

    [17] Liu Y, Fang C Z, Gao X et al. Theoretical investigation of tensile-strained GeSn/SiGeSn multiple quantum well laser wrapped in Si3N4 liner stressor[J]. IEEE Photonics Journal, 10, 1500609(2018).

    [18] Millar R W. Dumas D C S, Gallacher K F, et al. Mid-infrared light emission > 3 μm wavelength from tensile strained GeSn microdisks[J]. Optics Express, 25, 25374-25385(2017).

    [19] Yoo K H, Albrecht J D. Ram-Mohan L R. Strain in layered zinc blende and wurtzite semiconductor structures grown along arbitrary crystallographic directions[J]. American Journal of Physics, 78, 589-597(2010).

    [20] Martin R M. Theoretical calculations of heterojunction discontinuities in the Si/Ge system[J]. Physical Review B, 34, 5621-5634(1986).

    [22] Fischetti M V, Laux S E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys[J]. Journal of Applied Physics, 80, 2234-2252(1996).

    [23] Tahini H, Chroneos A, Grimes R W et al. Strain-induced changes to the electronic structure of germanium[J]. Journal of Physics: Condensed Matter, 24, 195802(2012).

    [24] Inaoka T, Furukawa T, Toma R et al. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge[J]. Journal of Applied Physics, 118, 105704(2015).

    [25] Liu L, Zhang M, Hu L J et al. Effect of tensile strain on the electronic structure of Ge: a first-principles calculation[J]. Journal of Applied Physics, 116, 113105(2014).

    Tools

    Get Citation

    Copy Citation Text

    Qinqin Sun, Shihao Huang. Calculation of Conduction Band Structure Tensile Strained Ge1-xSnx Alloys for Achieving Direct Band Gap Materials[J]. Laser & Optoelectronics Progress, 2020, 57(9): 091602

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Oct. 8, 2019

    Accepted: Nov. 26, 2019

    Published Online: May. 6, 2020

    The Author Email: Huang Shihao (haoshihuang@126.com)

    DOI:10.3788/LOP57.091602

    Topics