Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1438(2024)
High-Energy-Density Dielectric Polymer Composites Based on Multiscale Structure Design and Interface Engineering
[1] [1] LANDI B J, GANTER M J, CRESS C D, et al. Carbon nanotubes for lithium ion batteries[J]. Energy Environ Sci, 2009, 2(6): 638-654.
[2] [2] SAHOO S, KUMAR R, JOANNI E, et al. Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors[J]. J Mater Chem A, 2022, 10(25): 13190-13240.
[3] [3] FENG Q K, ZHONG S L, PEI J Y, et al. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors[J]. Chem Rev, 2022, 122(3): 3820-3878.
[4] [4] YIN Y N, HE J C, ZHANG C G, et al. Flexible cellulose/alumina (Al2O3) nanocomposite films with enhanced energy density and efficiency for dielectric capacitors[J]. Cellulose, 2021, 28(3): 1541-1553.
[5] [5] LI D X, ZENG X J, LI Z P, et al. Progress and perspectives in dielectric energy storage ceramics[J]. J Adv Ceram, 2021, 10(4): 675-703.
[6] [6] GAO D, TAN Z W, FAN Z, et al. All-inorganic flexible Ba0.67Sr0.33TiO3 thin films with excellent dielectric properties over a wide range of frequencies[J]. ACS Appl Mater Interfaces, 2019, 11(30): 27088-27097.
[7] [7] JAYAKRISHNAN A R, SILVA J P B, KAMAKSHI K, et al. Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors?[J]. Prog Mater Sci, 2023, 132: 101046.
[8] [8] WU X D, CHEN X, ZHANG Q M, et al. Advanced dielectric polymers for energy storage[J]. Energy Storage Mater, 2022, 44: 29-47.
[9] [9] YANG Z T, DU H L, JIN L, et al. High-performance lead-free bulk ceramics for electrical energy storage applications: Design strategies and challenges[J]. J Mater Chem A, 2021, 9(34): 18026-18085.
[10] [10] CHEN Q, SHEN Y, ZHANG S H, et al. Polymer-based dielectrics with high energy storage density[J]. Annu Rev Mater Res, 2015, 45: 433-458.
[11] [11] ZHU L, WANG Q. Novel ferroelectric polymers for high energy density and low loss dielectrics[J]. Macromolecules, 2012, 45(7): 2937-2954.
[12] [12] BAER E, ZHU L. 50th anniversary perspective: Dielectric phenomena in polymers and multilayered dielectric films[J]. Macromolecules, 2017, 50(6): 2239-2256.
[13] [13] ZHU L. Exploring strategies for high dielectric constant and low loss polymer dielectrics[J]. J Phys Chem Lett, 2014, 5(21): 3677-3687.
[14] [14] KAO K C. Dielectric phenomena in solids: with emphasis on physical concepts of electronic processes[M]. Amsterdam: Academic Press, 2004.
[15] [15] DOU L Y, LIN Y H, NAN C W. An overview of linear dielectric polymers and their nanocomposites for energy storage[J]. Molecules, 2021, 26(20): 6148.
[16] [16] FENG M J, FENG Y, ZHANG T D, et al. Recent advances in multilayer-structure dielectrics for energy storage application[J]. Adv Sci, 2021, 8(23): 2102221.
[17] [17] DU Jinhua, LI Yong, SUN Ningning, et al. J Chin Ceram Soc, 2022, 50(3): 608-624.
[18] [18] WANG D X, CLARK M B Jr, TROLIER-MCKINSTRY S. Bismuth niobate thin films for dielectric energy storage applications[J]. J Am Ceram Soc, 2018, 101(8): 3443-3451.
[19] [19] CHEN H Y, LIU L, YAN Z N, et al. Ultrahigh energy storage density in superparaelectric-like Hf0.2Zr0.8O2 electrostatic supercapacitors[J]. Adv Sci, 2023, 10(18): e2300792.
[20] [20] CHO S, YUN C, KIM Y S, et al. Strongly enhanced dielectric and energy storage properties in lead-free perovskite titanate thin films by alloying[J]. Nano Energy, 2018, 45: 398-406.
[21] [21] PAN H, LAN S, XU S Q, et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics[J]. Science, 2021, 374(6563): 100-104.
[22] [22] PAN H, LI F, LIU Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design[J]. Science, 2019, 365(6453): 578-582.
[23] [23] ZHAO L, LIU Q, GAO J, et al. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance[J]. Adv Mater, 2017, 29(31): 1701824.
[24] [24] YANG B B, ZHANG Y, PAN H, et al. High-entropy enhanced capacitive energy storage[J]. Nat Mater, 2022, 21(9): 1074-1080.
[25] [25] YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Prog Mater Sci, 2019, 102: 72-108.
[26] [26] WANG G, LU Z L, LI Y, et al. Electroceramics for high-energy density capacitors: Current status and future perspectives[J]. Chem Rev, 2021, 121(10): 6124-6172.
[27] [27] MENG N, REN X T, SANTAGIULIANA G, et al. Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors[J]. Nat Commun, 2019, 10: 4535.
[28] [28] XIE H R, LUO H, PEI Z T, et al. Improved discharge energy density and efficiency of polypropylene-based dielectric nanocomposites utilizing BaTiO3@TiO2 nanoparticles[J]. Mater Today Energy, 2022, 30: 101160.
[29] [29] UYOR U, POPOOLA A, POPOOLA O, et al. Thermal, mechanical and dielectric properties of functionalized sandwich BN-BaTiO3-BN/ polypropylene nanocomposites[J]. J Alloys Compd, 2022, 894: 162405.
[30] [30] HONG J I, WINBERG P, SCHADLER L S, et al. Dielectric properties of zinc oxide/low density polyethylene nanocomposites[J]. Mater Lett, 2005, 59(4): 473-476.
[31] [31] WANG S J, ZHA J W, LI W K, et al. Distinctive electrical properties in sandwich-structured Al2O3/low density polyethylene nanocomposites[J]. Appl Phys Lett, 2016, 108(9): 092902.
[32] [32] FENG Q K, ZHANG Y X, LIU D F, et al. Dielectric and energy storage properties of all-organic sandwich-structured films used for high-temperature film capacitors[J]. Mater Today Energy, 2022, 29: 101132.
[33] [33] PING J B, FENG Q K, ZHANG Y X, et al. A bilayer high-temperature dielectric film with superior breakdown strength and energy storage density[J]. Nanomicro Lett, 2023, 15(1): 154.
[34] [34] Prateek, THAKUR V K, GUPTA R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects[J]. Chem Rev, 2016, 116(7): 4260-4317.
[35] [35] SINGH D, SINGH N, GARG A, et al. Engineered thiol anchored Au-BaTiO3/PVDF polymer nanocomposite as efficient dielectric for electronic applications[J]. Compos Sci Technol, 2019, 174: 158-168.
[36] [36] RABUFFI M, PICCI G. Status quo and future prospects for metallized polypropylene energy storage capacitors[J]. IEEE Trans Plasma Sci, 2002, 30(5): 1939-1942.
[37] [37] ZHOU W Y, LI T, YUAN M X, et al. Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance[J]. Energy Storage Mater, 2021, 42: 1-11.
[38] [38] TAN D Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors[J]. Adv Funct Materials, 2020, 30(18): 1808567.
[39] [39] MA R, BALDWIN A F, WANG C C, et al. Rationally designed polyimides for high-energy density capacitor applications[J]. ACS Appl Mater Interfaces, 2014, 6(13): 10445-10451.
[40] [40] ROBERTSON J. High dielectric constant oxides[J]. Eur Phys J Appl Phys, 2004, 28(3): 265-291.
[41] [41] DANG Z M, YUAN J K, YAO S H, et al. Flexible nanodielectric materials with high permittivity for power energy storage[J]. Adv Mater, 2013, 25(44): 6334-6365.
[42] [42] YU K, BAI Y Y, ZHOU Y C, et al. Poly(vinylidene fluoride) polymer based nanocomposites with enhanced energy density by filling with polyacrylate elastomers and BaTiO3 nanoparticles[J]. Appl Phys Lett, 2014, 104(8): 082904.
[43] [43] YU K, WANG H, ZHOU Y C, et al. Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications[J]. J Appl Phys, 2013, 113(3): 34105-34105-6.
[44] [44] TIAN H Y, QI J Q, WANG Y, et al. Improved dielectric properties of BaxSr1?xTiO3-based composite ceramics derived from core-shell structured nanopowders[J]. Prog Solid State Chem, 2005, 33(2-4): 207-215.
[45] [45] YAO J L, XIONG C X, DONG L J, et al. Enhancement of dielectric constant and piezoelectric coefficient of ceramic-polymer composites by interface chelation[J]. J Mater Chem, 2009, 19(18): 2817-2821.
[46] [46] HOMES C C, VOGT T, SHAPIRO S M, et al. Optical response of high-dielectric-constant perovskite-related oxide[J]. Science, 2001, 293(5530): 673-676.
[47] [47] SUBRAMANIAN M A, LI D, DUAN N, et al. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases[J]. J Solid State Chem, 2000, 151(2): 323-325.
[48] [48] CHOUDHURY A. Preparation, characterization and dielectric properties of polyetherimide nanocomposites containing surface-functionalized BaTiO3 nanoparticles[J]. Polym Int, 2012, 61(5): 696-702.
[49] [49] HUANG X Y, ZHI C Y, JIANG P K, et al. Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: An ideal dielectric material with high thermal conductivity[J]. Adv Funct Materials, 2013, 23(14): 1824-1831.
[50] [50] KHODAPARAST P, OUNAIES Z. On the impact of functionalization and thermal treatment on dielectric behavior of low content TiO2 PVDF nanocomposites[J]. IEEE Trans Dielectr Electr Insul, 2013, 20(1): 166-167.
[51] [51] NIU Y J, ZHANG R X, DONG J F, et al. Organic dyestuff modifier enhancing energy storage performance of PEI-based nanocomposites[J]. Mater Lett, 2023, 333: 133510.
[52] [52] WU L W, CAI Z M, LI L T, et al. Breakdown strength and energy density enhancement in polymer-ceramic nanocomposites: Role of particle size distribution[J]. Compos Sci Technol, 2021, 212: 108868.
[53] [53] LIANG L, SHI Z C, TAN X L, et al. Largely improved breakdown strength and discharge efficiency of layer-structured nanocomposites by filling with a small loading fraction of 2D zirconium phosphate nanosheets[J]. Adv Materials Inter, 2022, 9(3): 2101646.
[54] [54] REN L L, QIAO J Q, WANG C, et al. Role of bandgap and permittivity of nanofiller in the energy storage performance of PEI-based nanocomposites[J]. Mater Today Energy, 2022, 30: 101161.
[55] [55] ZHANG W C, JIANG M, GUAN F, et al. Influence of the acceptor-fillers on the dielectric properties of polyimide composites[J]. Polym Test, 2023, 122: 108025.
[56] [56] YUE D, FENG Y, LIU X X, et al. Prediction of energy storage performance in polymer composites using high-throughput stochastic breakdown simulation and machine learning[J]. Adv Sci, 2022, 9(17): e2105773.
[57] [57] SHEN Z H, BAO Z W, CHENG X X, et al. Designing polymer nanocomposites with high energy density using machine learning[J]. NPJ Comput Mater, 2021, 7: 110.
[58] [58] FENG Y, XUE J P, ZHANG T D, et al. Double-gradients design of polymer nanocomposites with high energy density[J]. Energy Storage Mater, 2022, 44: 73-81.
[59] [59] YANG Y, HE J L, LI Q, et al. Self-healing of electrical damage in polymers using superparamagnetic nanoparticles[J]. Nat Nanotechnol, 2019, 14(2): 151-155.
[60] [60] GAO L, YANG Y, XIE J Y, et al. Autonomous self-healing of electrical degradation in dielectric polymers using In situ electroluminescence[J]. Matter, 2020, 2(2): 451-463.
[61] [61] XIE J Y, GAO L, HU J, et al. Self-healing of electrical damage in thermoset polymers via anionic polymerization[J]. J Mater Chem C, 2020, 8(18): 6025-6033.
[62] [62] SUN P T, ZHAO M K, SIMA W X, et al. Microwave-magnetic field dual-response raspberry-like microspheres for targeted and repeated self-healing from electrical damage of insulating composites[J]. J Mater Chem C, 2022, 10(28): 10262-10270.
[63] [63] CAI Q N, ZHAO D Y, XU H, et al. Crosslinked PAES-based sandwich-structured polymer nanocomposites with covalently strengthened interface towards high-temperature capacitive energy storage[J]. Nanocomposites, 2023, 9(1): 10-17.
[64] [64] ZHANG K Y, MA Z Y, DENG H, et al. Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer[J]. Adv Compos Hybrid Mater, 2022, 5(1): 238-249.
[65] [65] JIAN G, JIAO Y, MENG Q Z, et al. Polyimide composites containing confined tetragonality high TC PbTiO3 nanofibers for high-temperature energy storage[J]. Compos Part B Eng, 2021, 224: 109190.
[66] [66] FENG Y, ZHOU Y H, ZHANG T D, et al. Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites[J]. Energy Storage Mater, 2020, 25: 180-192.
[67] [67] ZHANG W C, GUAN F, JIANG M, et al. Enhanced energy storage performance of all-organic sandwich structured dielectrics with FPE and P(VDF-HFP)[J]. Compos Part A Appl Sci Manuf, 2022, 159: 107018.
[68] [68] GOYAL R K, KAPADIA A S. Study on phenyltrimethoxysilane treated nano-silica filled high performance poly(etheretherketone) nanocomposites[J]. Compos Part B Eng, 2013, 50: 135-143.
[69] [69] LIU G, LEI Q Q, FENG Y, et al. High-temperature energy storage dielectric with inhibition of carrier injection/migration based on band structure regulation[J]. InfoMat, 2023, 5(2): e12368.
[70] [70] LI Z P, CHEN X Y, ZHANG C, et al. High dielectric constant polycarbonate/nylon multilayer films capacitors with self-healing capability[J]. ACS Appl Polym Mater, 2019, 1(4): 867-875.
[71] [71] LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites[J]. Nature, 2015, 523(7562): 576-579.
[72] [72] ZHOU Y, LI Q, DANG B, et al. A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures[J]. Adv Mater, 2018, 30(49): e1805672.
[73] [73] HAN Z D, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review[J]. Prog Polym Sci, 2011, 36(7): 914-944.
[74] [74] GUO Y Q, LYU Z Y, YANG X T, et al. Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites[J]. Compos Part B Eng, 2019, 164: 732-739.
[75] [75] OU J F, CHEN Y H, ZHAO J F, et al. Nano-sized calcium copper titanate for the fabrication of high dielectric constant functional ceramic-polymer composites[J]. Polymers, 2022, 14(20): 4328.
[76] [76] SHEN Z H, WANG J J, LIN Y H, et al. High-throughput phase-field design of high-energy-density polymer nanocomposites[J]. Adv Mater, 2018, 30(2): 1704380.
[77] [77] YU K, NIU Y J, BAI Y Y, et al. Poly(vinylidene fluoride) polymer based nanocomposites with significantly reduced energy loss by filling with core-shell structured BaTiO3/SiO2 nanoparticles[J]. Appl Phys Lett, 2013, 102(10): 102903.
[78] [78] REN L L, LI H, XIE Z L, et al. High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core-shell nanostructured nanofillers[J]. Adv Energy Mater, 2021, 11(28): 2101297.
[79] [79] JIANG J H, LI J P, QIAN J, et al. Benzoxazole-polymer@CCTO hybrid nanoparticles prepared via RAFT polymerization: Toward poly(p-phenylene benzobisoxazole) nanocomposites with enhanced high-temperature dielectric properties[J]. J Mater Chem A, 2021, 9(46): 26010-26018.
[80] [80] LUO H, CHEN S, LIU L H, et al. Core-shell nanostructure design in polymer nanocomposite capacitors for energy storage applications[J]. ACS Sustainable Chem Eng, 2019, 7(3): 3145-3153.
[81] [81] ZHANG X, SHEN Y, XU B, et al. Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage[J]. Adv Mater, 2016, 28(10): 2055-2061.
[82] [82] CHEN S N, CHEN S, QIAO R, et al. Enhanced dielectric constant of PVDF-based nanocomposites with one-dimensional core-shell polypyrrole/sepiolite nanofibers[J]. Compos Part A Appl Sci Manuf, 2021, 145: 106384.
[83] [83] HAO Y N, WANG X H, BI K, et al. Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films[J]. Nano Energy, 2017, 31: 49-56.
[84] [84] LI L T, DONG J F, HU R C, et al. Wide-bandgap fluorides/polyimide composites with enhanced energy storage properties at high temperatures[J]. Chem Eng J, 2022, 435: 135059.
[85] [85] YU K, NIU Y J, XIANG F, et al. Enhanced electric breakdown strength and high energy density of Barium titanate filled polymer nanocomposites[J]. J Appl Phys, 2013, 114(17): 174107.
[86] [86] NIU Y J, XIANG F, WANG Y F, et al. Effect of the coverage level of carboxylic acids as a modifier for barium titanate nanoparticles on the performance of poly(vinylidene fluoride)-based nanocomposites for energy storage applications[J]. Phys Chem Chem Phys, 2018, 20(9): 6598-6605.
[87] [87] NIU Y J, WANG H. Dielectric nanomaterials for power energy storage: Surface modification and characterization[J]. ACS Appl Nano Mater, 2019, 2(2): 627-642.
[88] [88] BI K, BI M H, HAO Y N, et al. Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density[J]. Nano Energy, 2018, 51: 513-523.
[89] [89] DANG Z M, LIN Y Q, XU H P, et al. Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films with high thermal stability[J]. Adv Funct Mater, 2008, 18(10): 1509-1517.
[90] [90] LI Q, HAN K, GADINSKI M R, et al. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites[J]. Adv Mater, 2014, 26(36): 6244-6249.
[91] [91] LI H, AI D, REN L L, et al. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers[J]. Adv Mater, 2019, 31(23): e1900875.
[92] [92] WILKINSON D, LANGER J S, SEN P N. Enhancement of the dielectric constant near a percolation threshold[J]. Phys Rev B, 1983, 28(2): 1081-1087.
[93] [93] CALAME J P. Finite difference simulations of permittivity and electric field statistics in ceramic-polymer composites for capacitor applications[J]. J Appl Phys, 2006, 99(8): 084101.
[94] [94] WANG Y F, CUI J, YUAN Q B, et al. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites[J]. Adv Mater, 2015, 27(42): 6658-6663.
[95] [95] ZHANG X, JIANG J Y, SHEN Z H, et al. Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions[J]. Adv Mater, 2018, 30(16): 1707269.
[96] [96] NIU Y J, DONG J F, HE Y F, et al. Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface[J]. Nano Energy, 2022, 97: 107215.
[97] [97] HU P H, SHEN Y, GUAN Y H, et al. Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density[J]. Adv Funct Mater, 2014, 24(21): 3172-3178.
[98] [98] BAI H R, ZHU K, WANG Z, et al. 2D fillers highly boost the discharge energy density of polymer-based nanocomposites with trilayered architecture[J]. Adv Funct Materials, 2021, 31(41): 2102646.
[99] [99] WANG Y F, LI Y, WANG L X, et al. Gradient-layered polymer nanocomposites with significantly improved insulation performance for dielectric energy storage[J]. Energy Storage Mater, 2020, 24: 626-634.
[100] [100] ALI MARWAT M, MA W G, FAN P Y, et al. Ultrahigh energy density and thermal stability in sandwich-structured nanocomposites with dopamine@Ag@BaTiO3[J]. Energy Storage Mater, 2020, 31: 492-504.
[101] [101] CHEN J, WANG Y F, XU X W, et al. Ultrahigh discharge efficiency and energy density achieved at low electric fields in sandwich-structured polymer films containing dielectric elastomers[J]. J Mater Chem A, 2019, 7(8): 3729-3736.
[102] [102] SUN L, SHI Z C, HE B L, et al. Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: A novel design targeting advanced energy storage capacitors[J]. Adv Funct Materials, 2021, 31(35): 2100280.
[103] [103] YE H, ZHOU Y J, CHEN F J, et al. A trilayer polymer composite with macroscopic gradient dielectric constant distribution for advanced energy storage capacitors[J]. Nano, 2023, 18(4): 2350024.
[104] [104] DONG J F, HU R C, NIU Y J, et al. Scalable in situ surface-coated polymer dielectrics with significantly enhanced high-temperature breakdown strength[J]. Mater Today Energy, 2022, 30: 101158.
[105] [105] DONG J F, HU R C, NIU Y J, et al. Enhancing high-temperature capacitor performance of polymer nanocomposites by adjusting the energy level structure in the micro-/meso-scopic interface region[J]. Nano Energy, 2022, 99: 107314.
[106] [106] DONG J F, HU R C, XU X W, et al. A facile in situ surface-functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance[J]. Adv Funct Materials, 2021, 31(32): 2102644.
[107] [107] WANG Y F, LI Z Z, MORAN T J, et al. Interfacial 2D montmorillonite nanocoatings enable sandwiched polymer nanocomposites to exhibit ultrahigh capacitive energy storage performance at elevated temperatures[J]. Adv Sci, 2022, 9(35): e2204760.
[108] [108] LI H, GADINSKI M R, HUANG Y Q, et al. Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge-discharge efficiency[J]. Energy Environ Sci, 2020, 13(4): 1279-1286.
[109] [109] PAN Z Z, PAN Y P, LI L, et al. High energy density and superior charge/discharge efficiency polymer dielectrics enabled by rationally designed dipolar polarization[J]. J Materiomics, 2023, 9(3): 601-608.
[110] [110] PAN Z Z, LI L, WANG L N, et al. Tailoring poly(styrene-co-maleic anhydride) networks for all-polymer dielectrics exhibiting ultrahigh energy density and charge-discharge efficiency at elevated temperatures[J]. Adv Mater, 2023, 35(1): e2207580.
[111] [111] DONG J F, LI L, QIU P Q, et al. Scalable polyimide-organosilicate hybrid films for high-temperature capacitive energy storage[J]. Adv Mater, 2023, 35(20): e2211487.
[112] [112] CHEN J, ZHOU Y, HUANG X Y, et al. Ladderphane copolymers for high-temperature capacitive energy storage[J]. Nature, 2023, 615(7950): 62-66.
[113] [113] YUAN C, ZHOU Y, ZHU Y J, et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage[J]. Nat Commun, 2020, 11(1): 3919.
Get Citation
Copy Citation Text
WANG Yifei, WU Shili, WANG Hong. High-Energy-Density Dielectric Polymer Composites Based on Multiscale Structure Design and Interface Engineering[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1438
Category:
Received: Oct. 6, 2023
Accepted: --
Published Online: Aug. 19, 2024
The Author Email: Hong WANG (wangh6@sustech.edu.cn)