Photonic Sensors, Volume. 14, Issue 1, 240121(2024)

Random Raman Fiber Laser as a Liquid Refractive Index Sensor

Bing HAN1,2, Yuxi MA1,2, Han WU3、*, and and Yong ZHAO1,2
Author Affiliations
  • 1College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
  • 2Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004,China
  • 3College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
  • show less
    References(42)

    [1] [1] Y. Qian, Y. Zhao, Q. Wu, and Y. Yang, “Review of salinity measurement technology based on optical fiber sensor,” Sensors and Actuators B: Chemical, 2018, 260: 86–105.

    [2] [2] Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. Ang, et al., “Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth,” Advanced Optical Materials, 2019, 7(9): 1801433.

    [3] [3] Z. Ding, K. Sun, K. Liu, J. Jiang, D. Yang, Z. Yu, et al., “Distributed refractive index sensing based on tapered fibers in optical frequency domain reflectometry,” Optics Express, 2018, 26(10): 13042–13054.

    [4] [4] R. Fan, Q. Ma, L. Li, Y. Zhuo, J. Shen, Z. Ren, et al., “Liquid level and refractive index double-parameter sensor based on tapered photonic crystal fiber,” Journal of Lightwave Technology, 2020, 38(14): 3717–3722.

    [5] [5] D. Aydin, J. A. Barnes, and H. Loock, “In-fiber interferometry sensors for refractive index,” Applied Physics Reviews, 2023, 10(1): 011307.

    [6] [6] J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser & Photonics Reviews, 2013, 7(1): 83–108.

    [7] [7] H. Li, J. Liu, X. He, J. Yuan, Q. Wu, and B. Liu, “Long-period fiber grating based on side-polished optical fiber and its sensing application,” IEEE Transactions on Instrumentation and Measurement, 2023, 72: 7001109.

    [8] [8] C. Liu, J. Lv, W. Liu, F. Wang, and P. K. Chu, “Overview of refractive index sensors comprising photonic crystal fibers based on the surface plasmon resonance effect,” Chinese Optics Letters, 2021, 19(10): 102202.

    [9] [9] L. Li, Y. Zhang, W. Zheng, R. Lv, and Y. Zhao, “Dual-channel in-fiber SPR sensor for simultaneous and highly sensitive measurement of salinity and temperature,” Optics Letters, 2023, 48(4): 952–955.

    [10] [10] C. Holmes, S. Ambran, P. A. Cooper, A. S. Webb, J. C. Gates, C. B. E. Gawith, et al., “Bend monitoring and refractive index sensing using flat fibre and multicore Bragg gratings,” Measurement Science and Technology, 2020, 31(8): 085203.

    [11] [11] Y. Wang, Z. Chen, W. Chen, and X. Zhang, “Refractive index and temperature sensor based on fiber ring laser with tapered seven core fiber structure in 2 μm band,” Optical Fiber Technology, 2021, 61: 102388.

    [12] [12] F. Zhao, W. Lin, J. Hu, S. Liu, F. Yu, X. Chen, et al., “Highly sensitive salinity and temperature measurement based on tapered-SHF MZI fiber laser structure,” Measurement Science and Technology, 2023, 34(6): 064002.

    [13] [13] S. K. Turitsyn, S. A. Babin, A. E. El Taher, P. Harper, D. V. Churkin, S. I. Kablukov, et al., “Random distributed feedback fibre laser,” Nature Photonics, 2010, 4(4): 231–235.

    [14] [14] A. S. L. Gomes, A. L. Moura, C. B. Araújo, and E. P. Raposo, “Recent advances and applications of random lasers and random fiber lasers,” Progress in Quantum Electronics, 2021, 78: 100343.

    [15] [15] D. V. Churkin, S. Sugavanam, I. D. Vatnik, Z. Wang, E. V. Podivilov, S. A. Babin, et al., “Recent advances in fundamentals and applications of random fiber lasers,” Advances in Optics and Photonics, 2015, 7(3): 516–569.

    [16] [16] B. Han, Y. Rao, H. Wu, J. Yao, H. Guan, R. Ma, et al., “Low-noise high-order Raman fiber laser pumped by random lasing,” Optics Letters, 2020, 45(20): 5804–5807.

    [17] [17] R. Deheri, S. Dash, V. R. Supradeepa, and V. Balaswamy, “Cascaded Raman fiber lasers with ultrahigh spectral purity,” Optics Letters, 2022, 47(14): 3499–3502.

    [18] [18] L. Zhang, J. Dong, and Y. Feng, “High-power and high-order random Raman fiber lasers,” IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1400106.

    [19] [19] Y. Zhang, J. Ye, X. Ma, J. Xu, J. Song, T. Yao, et al., “High power tunable multiwavelength random fiber laser at 1.3 μm waveband,” Optics Express, 2021, 29(4): 5516–5524.

    [20] [20] H. Zhang, J. Wu, Y. Wan, P. Wang, B. Yang, X. Xi, et al., “Kilowatt random Raman fiber laser with full-open cavity,” Optics Letters, 2022, 47(3): 493–496.

    [21] [21] R. Ma, X. Quan, H. Wu, W. Gao, D. Huang, X. Wang, et al., “20 watt-level single transverse mode narrow linewidth and tunable random fiber laser at 1.5 μm band,” Optics Express, 2022, 30(16): 28795–28804.

    [22] [22] H. Wu, B. Han, Z. Wang, G. Genty, and H. Liang, “Temporal ghost imaging with random fiber lasers,” Optics Express, 2020, 28(7): 9957–9964.

    [23] [23] S. Wang, W. Zhang, Y. Zhang, and Y. Rao, “Raman gain square-wave noise-like pulse laser pumped by a random fiber laser,” Annalen der Physik, 2021, 533(2): 2000452.

    [24] [24] Y. Wang, H. Luo, H. Wu, J. Li, and Y. Liu, “Tunable pulsed dysprosium laser within a continuous range of 545 nm around 3 μm,” Journal of Lightwave Technology, 2022, 40(14): 4841–4847.

    [25] [25] H. Wu, W. Wang, Y. Li, C. Li, J. Yao, Z. Wang, et al., “Difference-frequency generation of random fiber lasers for broadly tunable mid-infrared continuous-wave random lasing generation,” Journal of Lightwave Technology, 2022, 40(9): 2965–2970.

    [26] [26] H. Wu, W. Wang, B. Hu, Y. Li, K. Tian, R. Ma, et al., “Widely tunable continuous-wave visible and mid-infrared light generation based on a dual-wavelength switchable and tunable random Raman fiber laser,” Photonics Research, 2023, 11(5):808–816.

    [27] [27] J. Deng, D. V. Churkin, Z. Xu, and X. Shu, “Random fiber laser based on a partial-reflection random fiber grating for high temperature sensing,” Optics Letters, 2021, 46(5): 957–960.

    [28] [28] A. Sanchez-Gonzalez, R. A. Perez-Herrera, P. Roldan-Varona, L. Rodriguez-Cobo, J. M. Lopez-Higuera, and M. Lopez-Amo, “High performance fiber laser resonator for dual band (C and L) sensing,” Journal of Lightwave Technology, 2022, 40(15): 5273–5279.

    [29] [29] S. Miao, W. Zhang, W. Huang, and Y. Song, “High-resolution static strain sensor based on random fiber laser and beat frequency interrogation,” IEEE Photonics Technology Letters, 2019, 31(18): 1530–1533.

    [30] [30] Y. Xu, L. Zhang, S. Gao, P. Lu, S. Mihailov, and X. Bao, “Highly sensitive fiber random-grating-based random laser sensor for ultrasound detection,” Optics Letters, 2017, 42(7): 1353–1356.

    [31] [31] L. Zhang, P. Lu, Z. Zhou, Y. Wang, S. Mihailov, L. Chen, et al., “High-efficiency random fiber laser based on strong random fiber grating for MHz ultrasonic sensing,” IEEE Sensors Journal, 2020, 20(11): 5885–5892.

    [32] [32] Y. Pang, S. Ma, X. Zhao, Z. Qin, Z. Liu, and Y. Xu, “Broadband high-sensitivity acoustic sensing based on Brillouin random fiber laser,” Optics & Laser Technology, 2023, 161: 109195.

    [33] [33] Y. Fu, R. Zhu, B. Han, H. Wu, Y. Rao, C. Lu, et al., “175-km repeaterless BOTDA with hybrid high-order random fiber laser amplification,” Journal of Lightwave Technology, 2019, 37(18): 4680–4686.

    [34] [34] Z. Wang, Y. Rao, H. Wu, P. Li, Y. Jiang, X. Jia, et al., “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Optics Express, 2012, 20(16): 17695–17700.

    [35] [35] V. M. Soto and M. López-Amo, “Truly remote fiber optic sensor network,” Journal of Physics: Photonics, 2019, 1: 042002.

    [36] [36] S. Lin, Z. Wang, Y. Qi, B. Han, H. Wu, and Y. Rao, “Wideband remote-sensing based on random fiber laser,” Journal of Lightwave Technology, 2022, 40(9): 3104–3110.

    [37] [37] B. Han, H. Wu, Y. Liu, S. Dong, Y. Rao, Z. Wang, et al., “Ultralong single-ended random fiber laser and sensor,” Laser & Photonics Reviews, 2023, 17: 2200797.

    [38] [38] Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, et al., “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 0900506.

    [39] [39] C. Fan, Y. An, Y. Li, X. Hao, T. Yao, H. Xiao, et al., “Modal dynamics in kilowatt cladding-pumped random distributed feedback Raman fiber laser with brightness enhancement,” Journal of Lightwave Technology, 2022, 40(19): 6486–6492.

    [40] [40] H. Wu, Z. Wang, M. Fan, L. Zhang, W. Zhang, and Y. Rao, “Role of the mirror’s reflectivity in forward-pumped random fiber laser,” Optics Express, 2015, 23(2): 1421–1427.

    [41] [41] S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Physics Reports, 2014, 542: 133–193.

    [42] [42] B. Han, S. Dong, Y. Liu, and Z. Wang, “Cascaded random Raman fiber laser with low RIN and wide wavelength tunability,” Photonic Sensors, 2022, 12(4): 220414.

    Tools

    Get Citation

    Copy Citation Text

    Bing HAN, Yuxi MA, Han WU, and Yong ZHAO. Random Raman Fiber Laser as a Liquid Refractive Index Sensor[J]. Photonic Sensors, 2024, 14(1): 240121

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Regular

    Received: May. 16, 2022

    Accepted: Aug. 6, 2022

    Published Online: Apr. 11, 2024

    The Author Email: WU Han (hanwu@scu.edu.cn)

    DOI:10.1007/s13320-023-0697-6

    Topics