Journal of Applied Optics, Volume. 45, Issue 4, 732(2024)

Small object detection algorithm based on improved YOLOv3

Kai WANG... Shuli LOU* and Yan WANG |Show fewer author(s)
Author Affiliations
  • School of Physics and Electronic Information, Yantai University, Yantai 264005, China
  • show less
    Figures & Tables(11)
    Structure diagram of YOLOv3 network
    Diagram of Mosaic, Mixup and combination data enhancement example
    Structure diagram of improved YOLOv3 network
    Schematic diagram of CSP module, SimSPPF module and feature enhancement module
    Three cases with the same IoU value
    Comparison of detection effect of two algorithms on multi-target images
    • Table 1. Experimental environment configuration

      View table
      View in Article

      Table 1. Experimental environment configuration

      配置深度学习框架操作系统CPUGPU运行内存CUDA
      型号Pytorch 1.13Windows 10Inter Core i7-7770Tesla P10016 GB11.3
    • Table 2. Comparison of detection effects by different algorithms

      View table
      View in Article

      Table 2. Comparison of detection effects by different algorithms

      算法类别主干网络mAP/%FPSGPU
      SSD 300VGG1678.5371Tesla P100
      YOLOv3Darknet5381.3449Tesla P100
      文献[14]算法Darknet5383.2622RTX 2070
      文献[15]算法Darknet5383.832TITAN RTX
      文献[16]算法VGG1679.940GTX 1080Ti
      文献[17]算法Darknet5384.619RTX 2080Ti
      YOLOv4CSPDarknet5385.251Tesla P100
      本文算法Darknet5385.7446Tesla P100
    • Table 3. Comparison of missed detection rates for object detection %

      View table
      View in Article

      Table 3. Comparison of missed detection rates for object detection %

      类别SSDYOLOv3本文算法
      sofa22.1823.818.4
      bicycle3131.717.2
      motorbike21.524.316
      dog2922.714.7
      sheep3339.427.3
      horse16.117.511.5
    • Table 4. Effect comparison of different algorithms on different scale objects %

      View table
      View in Article

      Table 4. Effect comparison of different algorithms on different scale objects %

      类型mAPR
      小 (0,32]中 (32,96]大 (96,416]小 (0,32]中 (32,96]大 (96,416]
      SSD8.923.55424.638.665.1
      YOLOv310.725.345.326.142.156.3
      YOLOv417.54357.335.355.466.7
      本文算法19.43559.241.64868.1
    • Table 5. Results of ablation comparison experiment

      View table
      View in Article

      Table 5. Results of ablation comparison experiment

      组别算法改进方式mAP/%FPS
      小尺度总体
      1YOLOv332.781.3449
      2YOLOv3+数据增强34.381.9149
      3YOLOv3+数据增强+GIoU37.183.0248
      4YOLOv3+数据增强+GIoU+改进特征融合网络42.584.6446
      5YOLOv3+数据增强+GIoU+改进特征融合网络+特征增强模块46.385.7446
    Tools

    Get Citation

    Copy Citation Text

    Kai WANG, Shuli LOU, Yan WANG. Small object detection algorithm based on improved YOLOv3[J]. Journal of Applied Optics, 2024, 45(4): 732

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 31, 2023

    Accepted: --

    Published Online: Oct. 21, 2024

    The Author Email: LOU Shuli (娄树理)

    DOI:10.5768/JAO202445.0402002

    Topics