Photonics Research, Volume. 9, Issue 6, 1033(2021)

Complex Swift Hohenberg equation dissipative soliton fiber laser Editors' Pick

Ankita Khanolkar1, Yimin Zang1, and Andy Chong1,2、*
Author Affiliations
  • 1Department of Electro-Optics and Photonics, University of Dayton, Dayton, Ohio 45469, USA
  • 2Department of Physics, University of Dayton, Dayton, Ohio 45469, USA
  • show less
    References(21)

    [1] H. A. Haus. Theory of mode locking with a fast saturable absorber. J. Appl. Phys., 46, 3049-3058(1975).

    [2] N. Akhmediev, A. Ankiewicz. Dissipative Solitons: From Optics to Biology and Medicine, 751(2008).

    [3] W. Firth, A. Scroggie. Optical bullet holes: robust controllable localized states of a nonlinear cavity. Phys. Rev. Lett., 76, 1623-1626(1996).

    [4] J. Lega, J. V. Moloney, A. C. Newell. Swift–Hohenberg equation for lasers. Phys. Rev. Lett., 73, 2978-2981(1994).

    [5] K. Staliūnas, G. Šlekys, C. Weiss. Nonlinear pattern formation in active optical systems: shocks, domains of tilted waves, and cross-roll patterns. Phys. Rev. Lett., 79, 2658-2661(1997).

    [6] J.-F. Mercier, J. V. Moloney. Derivation of semiconductor laser mean-field and Swift–Hohenberg equations. Phys. Rev. E, 66, 036221(2002).

    [7] E. P. Ippen. Principles of passive mode locking. Appl. Phys. B, 58, 159-170(1994).

    [8] K.-I. Maruno, A. Ankiewicz, N. Akhmediev. Exact soliton solutions of the one-dimensional complex Swift–Hohenberg equation. Phys. D, 176, 44-66(2003).

    [9] J. M. Soto-Crespo, N. Akhmediev. Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift–Hohenberg equation. Phys. Rev. E, 66, 066610(2002).

    [10] H. Wang, L. Yanti. An efficient numerical method for the quintic complex Swift-Hohenberg equation. Numer. Math. Theory Methods Appl., 4, 237-254(2011).

    [11] S. Latas. High-energy plain and composite pulses in a laser modeled by the complex Swift–Hohenberg equation. Photon. Res., 4, 49-52(2016).

    [12] H. Haus, E. Ippen, K. Tamura. Additive-pulse modelocking in fiber lasers. IEEE J. Quantum Electron., 30, 200-208(1994).

    [13] L. E. Nelson, D. Jones, K. Tamura, H. Haus, E. Ippen. Ultrashort-pulse fiber ring lasers. Appl. Phys. B, 65, 277-294(1997).

    [14] S. Latas, M. Ferreira, M. Facão. Swift–Hohenberg soliton explosions. J. Opt. Soc. Am. B, 35, 2266-2271(2018).

    [15] L. Zhao, D. Li, L. Li, X. Wang, Y. Geng, D. Shen, L. Su. Route to larger pulse energy in ultrafast fiber lasers. IEEE J. Sel. Top. Quantum Electron., 24, 8800409(2017).

    [16] C. Bao, W. Chang, C. Yang, N. Akhmediev, S. T. Cundiff. Observation of coexisting dissipative solitons in a mode-locked fiber laser. Phys. Rev. Lett., 115, 253903(2015).

    [17] Y. Zhou, W. Lin, H. Cheng, W. Wang, T. Qiao, Q. Qian, S. Xu, Z. Yang. Composite filtering effect in a SESAM mode-locked fiber laser with a 3.2-Ghz fundamental repetition rate: switchable states from single soliton to pulse bunch. Opt. Express, 26, 10842-10857(2018).

    [18] A. Khanolkar, X. Ge, A. Chong. All-normal dispersion fiber laser with a bandwidth tunable fiber-based spectral filter. Opt. Lett., 45, 4555-4558(2020).

    [19] A. Chong, W. H. Renninger, F. W. Wise. Route to the minimum pulse duration in normal-dispersion fiber lasers. Opt. Lett., 33, 2638-2640(2008).

    [20] X. Wang, Y.-G. Liu, Z. Wang, Z. Wang, G. Yang. L-band efficient dissipative soliton erbium-doped fiber laser with a pulse energy of 6.15  nJ and 3  dB bandwidth of 47.8  nm. J. Lightwave Technol., 37, 1168-1173(2019).

    [21] J. Zhou, W. Qi, W. Pan, Y. Feng. Dissipative soliton generation from a large anomalous dispersion ytterbium-doped fiber laser. Opt. Lett., 45, 5768-5771(2020).

    Tools

    Get Citation

    Copy Citation Text

    Ankita Khanolkar, Yimin Zang, Andy Chong, "Complex Swift Hohenberg equation dissipative soliton fiber laser," Photonics Res. 9, 1033 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Ultrafast Optics

    Received: Jan. 12, 2021

    Accepted: Mar. 30, 2021

    Published Online: May. 27, 2021

    The Author Email: Andy Chong (achong1@udayton.edu)

    DOI:10.1364/PRJ.419686

    Topics