Optics and Precision Engineering, Volume. 30, Issue 22, 2876(2022)

Measurement and optimization control of output characteristics of high frequency magnetostrictive transducer

Wenmei HUANG1,2、*, Weishuai ZHANG1,2, and Ling WENG1,2
Author Affiliations
  • 1State Key Laboratory of Reliability and Interlligence of Electrical Equipment,Hebei University of Technology, Tianjin30030, China
  • 2Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin300130, China
  • show less
    References(17)

    [1] D STACHOWIAK, A DEMENKO. Finite element and experimental analysis of an axisymmetric electromechanical converter with a magnetostrictive rod. Energies, 13, 1230(2020).

    [2] [2] 2何忠波, 荣策, 周景涛, 等. 叠堆式超磁致伸缩致动器的模型预测滑模控制[J]. 光学 精密工程, 2018, 26(7): 1680-1690. doi: 10.3788/ope.20182607.1680HEZH B, RONGC, ZHOUJ T, et al. Model predictive sliding mode control for stack giant magnetostrictive actuators[J]. Opt. Precision Eng., 2018, 26(7): 1680-1690. (in Chinese). doi: 10.3788/ope.20182607.1680

    [3] M DOMENJOUD, E BERTHELOT, N GALOPIN et al. Characterization of giant magnetostrictive materials under static stress: influence of loading boundary conditions. Smart Materials and Structures, 28(2019).

    [4] [4] 4孙英, 郑岩, 翁玲, 等. 磁致伸缩液位传感器双检测线圈温度补偿与噪声抑制[J]. 光学 精密工程, 2019, 27(1): 156-163. doi: 10.3788/ope.20192701.0156SUNY, ZHENGY, WENGL, et al. Temperature compensation and noise suppression for magnetostrictive liquid level sensor using double detection coils[J]. Opt. Precision Eng., 2019, 27(1): 156-163. (in Chinese). doi: 10.3788/ope.20192701.0156

    [5] [5] 5赵能桐, 高兵, 宁倩, 等. 考虑温度扰动的超磁致伸缩换能器电-磁-热-机耦合特性研究[J]. 中国电机工程学报, 2022, 42(16): 6116-6125, 6185.ZHAON T, GAOB, NINGQ, et al. Electrical-magnetic-thermal-mechanical coupling characteristics of giant magnetostrictive transducer considering temperature disturbance[J]. Proceedings of the CSEE, 2022, 42(16): 6116-6125, 6185. (in Chinese)

    [6] [6] 6李云开, 王博文, 张冰. 铁镓合金的压磁效应与力传感器的研究[J]. 电工技术学报, 2019, 34(17): 3615-3621.LIY K, WANGB W, ZHANGB. Study on piezomagnetic effect of galfenol alloy and force sensor[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3615-3621. (in Chinese)

    [7] Y C ZHU, L JI. Theoretical and experimental investigations of the temperature and thermal deformation of a giant magnetostrictive actuator. Sensors and Actuators A: Physical, 218, 167-178(2014).

    [8] [8] 8杨蔚柠. 偏置磁场对稀土超磁致伸缩换能器性能的影响研究[D]. 湘潭: 湘潭大学, 2016.YANGW N. The Effect of Magnetic Bias Fields on The Characteristics of Rare Earth Magnetostrictive Transducer[D]. Xiangtan: Xiangtan University, 2016. (in Chinese)

    [9] [9] 9翁玲, 梁淑智, 王博文, 等. 考虑预应力的双励磁线圈铁镓换能器输出特性[J]. 电工技术学报, 2019, 34(23): 4859-4869. doi: 10.19595/j.cnki.1000-6753.tces.181418WENGL, LIANGSH ZH, WANGB W, et al. Output characteristics of double-excited coil Fe-Ga transducer considering pre-stress[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4859-4869. (in Chinese). doi: 10.19595/j.cnki.1000-6753.tces.181418

    [10] W C CAI, J F ZHANG, D W YU et al. Investigation into the shift of electromechanical conversion efficiency with temperature for Giant magnetostriction ultrasonic processing system, 116-121(2017).

    [11] Y FU, T FU, A M WANG. A design of wide-range frequency-tracking ultrasonic power supply. Journal of Physics: Conference Series, 1345(2019).

    [12] [12] 12黄文美, 胡少鹏, 张伟帅, 等. 高频磁致伸缩换能器谐振频率特性分析与控制[J]. 仪器仪表学报, 2021, 42(11): 258-266.HUANGW M, HUSH P, ZHANGW SH, et al. Analysis and control of resonance frequency characteristics of high-frequency magnetostrictive transducers[J]. Chinese Journal of Scientific Instrument, 2021, 42(11): 258-266. (in Chinese)

    [13] [13] 13赵能桐, 杨鑫, 陈钰凯, 等. 考虑超磁致伸缩材料非均匀性的大功率电声换能器阻抗特性[J]. 电工技术学报, 2021, 36(10): 1999-2006. doi: 10.19595/j.cnki.1000-6753.tces.200214ZHAON T, YANGX, CHENY K, et al. The impedance characteristics of high power electroacoustic transducer considering the inhomogeneity of giant magnetostrictive material[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 1999-2006. (in Chinese). doi: 10.19595/j.cnki.1000-6753.tces.200214

    [14] Z WANG, Y L ZHANG, Z Y REN et al. Modeling of anisotropic magnetostriction under DC bias based on an optimized BP neural network. IEEE Transactions on Magnetics, 56, 1-4(2020).

    [15] [15] 15刘浩, 赵丁选, 张祝新, 等. 基于BP神经网络的高速开关阀多级电压控制策略[J]. 农业机械学报, 2019, 50(4): 420-426. doi: 10.6041/j.issn.1000-1298.2019.04.048LIUH, ZHAOD X, ZHANGZH X, et al. Control strategy of high-speed switch valve under multistage adaptive voltage based on BP neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 420-426. (in Chinese). doi: 10.6041/j.issn.1000-1298.2019.04.048

    [16] [16] 16蔡万宠, 张建富, 郁鼎文, 等. 基于非定常机电转换系数的超磁致伸缩换能器输出振幅模型[J]. 清华大学学报(自然科学版), 2017, 57(5): 459-464.CAIW CH, ZHANGJ F, YUD W, et al. Equivalent amplitude model for a giant magnetostrictive transducer based on an unsteady electromechanical conversion coefficient[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(5): 459-464. (in Chinese)

    [17] [17] 17刘虎, 杨振鹏, 武登云. 基于位移信号的磁悬浮飞轮转速估计[J]. 光学 精密工程, 2020, 28(5): 1116-1123.LIUH, YANGZH P, WUD Y. Estimation of rotor speed using displacement signals in magnetic suspended flywheel[J]. Opt. Precision Eng., 2020, 28(5): 1116-1123. (in Chinese)

    Tools

    Get Citation

    Copy Citation Text

    Wenmei HUANG, Weishuai ZHANG, Ling WENG. Measurement and optimization control of output characteristics of high frequency magnetostrictive transducer[J]. Optics and Precision Engineering, 2022, 30(22): 2876

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Micro/Nano Technology and Fine Mechanics

    Received: Jul. 5, 2022

    Accepted: --

    Published Online: Nov. 28, 2022

    The Author Email: HUANG Wenmei (huzwm@hebut.edu.cn)

    DOI:10.37188/OPE.20223022.2876

    Topics