Journal of Inorganic Materials, Volume. 37, Issue 5, 567(2022)
[1] FEHIM F, HUSEYIN U. Microstructure, hardness and electrical properties of silver-based refractory contact materials[J]. Materials & Design, 24, 489-492(2003).
[2] HAUNER F, JEANNOT D, MCNEILLY K et al. Advanced AgSnO2 Contact Materials for the Replacement of AgCdO in High Current Contactors.[C]. Proceedings of the Forty-Sixth IEEE Holm Conference on Electrical Contacts, New York: IEEE, 225-230(2000).
[3] NILSSON O, HAUNER F, JEANNOT D. Replacement of AgCdO by AgSnO2 in DC contactors. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts/the 22nd International Conference on Electrical Contacts,[C]. New York: IEEE, 70-74(2004).
[4] GAVRILIU S, LUNGU M, ENESCU E et al. A comparative study concerning the obtaining and using of some Ag-CdO, Ag-ZnO and Ag-SnO2 sintered electrical contact materials[J]. Optoelectronics and Advanced Materials-Rapid Communications, 3, 688-692(2009).
[5] REHANI B, JOSHI P B, KHANNA P K. Fabrication of silver- graphite contact materials using silver nanopowders[J]. Journal of Materials Engineering and Performance, 19, 64-69(2010).
[6] SWINGLER J. Performance and arcing characteristics of Ag/Ni contact materials under DC resistive load conditions[J]. IET Science, Measurement & Technology, 5, 37-45(2011).
[7] ZHANG H, WANG X H, LI Y P et al. Preparation and characterization of silver-doped graphene-reinforced silver matrix bulk composite as a novel electrical contact material[J]. Applied Physics A, 125, 86(2019).
[8] SUN Z M. Progress in research and development on MAX phases: a family of layered ternary compounds[J]. International Materials Reviews, 56, 143-166(2011).
[9] ZHENG G M, HUANG Z Y, YU Q. Microstructural and mechanical properties of TiC
[10] WANG X H, ZHOU Y C. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review[J]. Journal of Materials Science & Technology, 26, 385-416(2010).
[11] DING J X, TIAN W B, ZHANG P G et al. Arc erosion behavior of Ag/Ti3AlC2 electrical contact materials[J]. Journal of Alloys and Compounds, 740, 669-676(2018).
[12] DING J X, TIAN W B, ZHANG P G et al. Preparation and arc erosion properties of Ag/Ti2SnC composites under electric arc discharging[J]. Journal of Advanced Ceramics, 8, 90-101(2019).
[13] DING J X, HUANG P Y, ZHA Y H et al. High-purity Ti2AlC powder: preparation and application in Ag-based electrical contact materials[J]. Journal of Inorganic Materials, 35, 729-734(2020).
[14] DING J X, TIAN W B, WANG D D et al. Arc erosion and degradation mechanism of Ag/Ti2AlC composite[J]. Acta Metallurgica Sinica, 55, 627-637(2019).
[15] DING J X, TIAN W B, WANG D D et al. Microstructure evolution, oxidation behavior and corrosion mechanism of Ag/Ti2SnC composite during dynamic electric arc discharging[J]. Journal of Alloys and Compounds, 785, 1086-1096(2019).
[16] GONG Y M, TIAN W B, ZHANG P G et al. Slip casting and pressureless sintering of Ti3AlC2[J]. Journal of Advanced Ceramics, 8, 367-376(2019).
[17] HUANG X C, FENG Y, QIAN G et al. Erosion behavior of Ti3AlC2 cathode under atmosphere air arc[J]. Journal of Alloys and Compounds, 727, 419-427(2017).
[18] HUANG X C, FENG Y, QIAN G et al. Influence of breakdown voltages on arc erosion of a Ti3AlC2 cathode in an air atmosphere[J]. Ceramics International, 43, 10601-10605(2017).
[19] HUANG X C, FENG Y, QIAN G et al. Arc corrosion behavior of Cu-Ti3AlC2 composites in air atmosphere[J]. Science China Technological Sciences, 61, 551-557(2018).
[20] LIU M M, CHEN J L, CUI H et al. Ag/Ti3AlC2 composites with high hardness, high strength and high conductivity[J]. Materials Letters, 213, 269-273(2018).
[21] LIU M M, CHEN J L, CUI H et al. Temperature-driven deintercalation and structure evolution of Ag/Ti3AlC2 composites[J]. Ceramics International, 44, 18129-18134(2018).
[22] DING J X, TIAN W B, WANG D D et al. Corrosion and degradation mechanism of Ag/Ti3AlC2 composites under dynamic electric arc discharging[J]. Corrosion Science, 156, 147-160(2019).
[23] NAGUIB M, KURTOGLU M, PRESSER V et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 23, 4248-4253(2011).
[24] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides(MXenes) for energy storage[J]. Nature Reviews Materials, 2, 16098(2017).
[25] NAGUIB M, COME J, DYATKIN B et al. MXene: a promising transition metal carbide anode for lithium-ion batteries[J]. Electrochemistry Communications, 16, 61-64(2012).
[26] ZHENG W, ZHANG P G, CHEN J. In situ synthesis of CNTs@Ti3C2 hybrid structures by microwave irradiation for high- performance anodes in lithium ion batteries[J]. Journal of Materials Chemistry A, 6, 3543-3551(2018).
[27] SHAHZAD F, ALHABEB M, HATTER C B et al. Electromagnetic interference shielding with 2D transition metal carbides(MXenes)[J]. Science, 353, 1137-1140(2016).
[28] YU X F, LI Y C, CHENG J B et al. Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity[J]. ACS Applied Materials & Interfaces, 7, 13707-13713(2015).
[29] ZHANG H, WANG L, CHEN Q et al. Preparation, mechanical and anti-friction performance of MXene/polymer composites[J]. Materials & Design, 92, 682-689(2016).
[30] LEI J C, ZHANG X, ZHOU Z. Recent advances in MXene: preparation, properties, and applications[J]. Frontiers of Physics, 10, 276-286(2015).
[31] NG V M H, HUANG H, ZHOU K et al. Recent progress in layered transition metal carbides and or nitrides (MXenes) and their composites-synthesis and applications[J]. Journal of Materials Chemistry A, 5, 3039-3068(2017).
[32] WANG Y P, LI H Y. Improved workability of the nanocomposited AgSnO2 contact material and its microstructure control during the arcing process[J]. Metallurgical and Materials Transactions A, 48, 609-616(2017).
[33] SHEIN I R, IVANOVSKII A L. Graphene-like titanium carbides and nitrides Ti
[34] NAGUIB M, MOCHALIN V N, BARSOUM M W et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 26, 992-1005(2014).
[35] NAGUIB M, MASHTALIR O, CARLE J et al. Two-dimensional transition metal carbides[J]. ACS Nano, 6, 1322-1331(2012).
[36] ZHANG X, LI S F, PAN B et al. Regulation of interface between carbon nanotubes-aluminum and its strengtheningeffect in CNTs reinforced aluminum matrix nanococomposites[J]. Carbon, 155, 686-696(2019).
Get Citation
Copy Citation Text
Jianxiang DING, Kaige ZHANG, Dongming LIU, Wei ZHENG, Peigen ZHANG, Zhengming SUN.
Category: RESEARCH LETTER
Received: Jul. 2, 2021
Accepted: --
Published Online: Jan. 10, 2023
The Author Email: Peigen ZHANG (zhpeigen@seu.edu.cn), Zhengming SUN (zmsun@seu.edu.cn)