Bulletin of the Chinese Ceramic Society, Volume. 43, Issue 10, 3824(2024)
Research Progress on Glass-Based Neutron and Gamma-Ray Shielding Materials
[1] [1] ABRAM T, ION S. Generation-IV nuclear power: a review of the state of the science[J]. Energy Policy, 2008, 36(12): 4323-4330.
[2] [2] ADAMANTIADES A, KESSIDES I. Nuclear power for sustainable development: current status and future prospects[J]. Energy Policy, 2009, 37(12): 5149-5166.
[3] [3] BROADHEAD B L, TANG J S, CHILDS R L, et al. Evaluation of shielding analysis methods in spent-fuel cask environments[J]. Nuclear Technology, 1997, 117(2): 206-222.
[4] [4] YUE K, LUO W Y, DONG X Q, et al. A new lead-free radiation shielding material for radiotherapy[J]. Radiation Protection Dosimetry, 2009, 133(4): 256-260.
[5] [5] NAITO M, KITAMURA H, KOIKE M, et al. Applicability of composite materials for space radiation shielding of spacecraft[J]. Life Sciences in Space Research, 2021, 31: 71-79.
[6] [6] MUTSCHELLER A. Physical standards of protection against roent-gen-ray dangers[J]. American Journal of Roentgenology, 1925(13): 65-70.
[7] [7] TSOULFANIDIS N. Nuclear energy[M]. New York: Springer, 2013.
[8] [8] ELMAHROUG Y, TELLILI B, SOUGA C. Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials[J]. Annals of Nuclear Energy, 2015, 75: 268-274.
[9] [9] MCALISTER D R. Gamma ray attenuation properties of common shielding materials[DB/OL]. (2018-06-18) [2024-03-12]. https://www.researchgate.net/publication/266500546_Gamma_Ray_Attenuation_Properties_of_Common_Shielding_Materials.
[10] [10] GOLDSMITH H H, IBSER H W, FELD B T. Neutron cross sections of the elements a compilation[J]. Reviews of Modern Physics, 1947, 19(4): 259-297.
[11] [11] BIJANU A, ARYA R, AGRAWAL V, et al. Metal-polymer composites for radiation protection: a review[J]. Journal of Polymer Research, 2021, 28(10): 392.
[12] [12] MORE C V, ALSAYED Z, BADAWI M S, et al. Polymeric composite materials for radiation shielding: a review[J]. Environmental Chemistry Letters, 2021, 19(3): 2057-2090.
[14] [14] ADAIR R K. Neutron cross sections of the elements[J]. Reviews of Modern Physics, 1950, 22(3): 249-289.
[15] [15] AUMAN M, BRADY F P, JUNGERMAN J A, et al. Neutron total cross sections of the light elements in the energy range 24-60 MeV[J]. Physical Review C, 1972, 5(1): 1-5.
[16] [16] BECKER R L, BARSCHALL H H. Total cross sections of light elements for (,n) neutrons[J]. Physical Review, 1956, 102(5): 1384-1389.
[17] [17] HAYASHI T, TOBITA K, NAKAMORI Y, et al. Advanced neutron shielding material using zirconium borohydride and zirconium hydride[J]. Journal of Nuclear Materials, 2009, 386/387/388: 119-121.
[18] [18] YILMAZ S N, AKBAY K, ZDEMIR T. A metal-ceramic-rubber composite for hybrid gamma and neutron radiation shielding[J]. Radiation Physics and Chemistry, 2021, 180: 109316.
[19] [19] GAN B, LIU S C, HE Z, et al. Research progress of metal-based shielding materials for neutron and gamma rays[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1609-1617.
[20] [20] WILLS A G, SCHN T B. Sequential Monte Carlo: a unified review[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2023, 6: 159-182.
[21] [21] HUNG Y C. A review of Monte Carlo and quasi-Monte Carlo sampling techniques[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2024, 16(1): e1637.
[23] [23] NAGAMINE S, FUJIBUCHI T, UMEZU Y, et al. Estimation of ambient dose equivalent distribution in the 18F-FDG administration room using Monte Carlo simulation[J]. Radiological Physics and Technology, 2017, 10(1): 121-128.
[24] [24] SOLBERG T D, DEMARCO J J, CHETTY I J, et al. A review of radiation dosimetry applications using the MCNP Monte Carlo code[J]. Radiochimica Acta, 2001, 89(4/5): 337-355.
[26] [26] CAI Y Y, HU K J, LI S H, et al. Structure optimization of electrical penetration assemblies: experimental facts and stress field analysis by the finite element method[J]. Materialia, 2022, 22: 101381.
[27] [27] GONG K Q, CAI Y Y, LIU Z, et al. Thermal cycle stability of glass-to-metal seals with glass preforms produced via powder-metallurgy and casting-machining methods[J]. Materials Research Express, 2023, 10(2): 025201.
[29] [29] PISARSKA J, LISIECKI R, RYBA-ROMANOWSKI W, et al. Glass preparation and temperature-induced crystallization in multicomponent B2O3-PbX2-PbO-Al2O3-WO3-Dy2O3 (X=F, Cl, Br) system[J]. Journal of Non-Crystalline Solids, 2011, 357(3): 1228-1231.
[31] [31] LI C W, ZHANG P P, LI D W. Study on low-cost preparation of glass-ceramic from municipal solid waste incineration (MSWI) fly ash and lead-zinc tailings[J]. Construction and Building Materials, 2022, 356: 129231.
[35] [35] ALSAIF N A M, ELSAD R A, SADEQ M S, et al. Antimony (III) oxide-reinforced lithium-calcium borate glasses: preparation and characterization of physical, optical, and -ray shielding behavior through experimental and theoretical methods[J]. Journal of Electronic Materials, 2022, 51(10): 5869-5879.
[38] [38] RAMESH K. Rapid quenching and glass formation in chalcogenide glasses: preparation and properties of Ge-As-Te glasses over an extended composition ranges[J]. Journal of Non-Crystalline Solids, 2009, 355(37/38/39/40/41/42): 2045-2049.
[39] [39] BAO W, YU X M, WANG T, et al. Tb3+/Eu3+ co-doped Al2O3-B2O3-SrO glass ceramics: preparation, structure and luminescence properties[J]. Optical Materials, 2021, 122: 111772.
[44] [44] NAUS D J, OLAND C B, ELLINGWOOD B R, et al. Aging management of containment structures in nuclear power plants[J]. Nuclear Engineering and Design, 1996, 166(3): 367-379.
[45] [45] TASNIM A, SAHADATH M H, ISLAM KHAN M N. Development of high-density radiation shielding materials containing BaSO4 and investigation of the gamma-ray attenuation properties[J]. Radiation Physics and Chemistry, 2021, 189: 109772.
[46] [46] OKAFOR C E, OKONKWO U C, OKOKPUJIE I P. Trends in reinforced composite design for ionizing radiation shielding applications: a review[J]. Journal of Materials Science, 2021, 56(20): 11631-11655.
[47] [47] PISCIELLA P, CRISUCCI S, KARAMANOV A, et al. Chemical durability of glasses obtained by vitrification of industrial wastes[J]. Waste Management, 2001, 21(1): 1-9.
[48] [48] SINGH V P, BADIGER N M. Investigation of gamma and neutron shielding parameters for borate glasses containing NiO and PbO[J]. Physics Research International, 2014, 2014(1): 954958.
[49] [49] ABUALROOS N J, BAHARUL A N A, ZAINON R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: a review[J]. Radiation Physics and Chemistry, 2019, 165: 108439.
[50] [50] MECKING O. Medieval lead glass in central Europe[J]. Archaeometry, 2013, 55(4): 640-662.
[51] [51] SINGH N, SINGH K J, SINGH K, et al. Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 225(3): 305-309.
[52] [52] AL-BURIAHI M, EL-AGAWANY F, SRIWUNKUM C, et al. Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses[J]. Physica B: Physics of Condensed Matter, 2020, 581(C): 411946.
[53] [53] SINGH H, SINGH K, GERWARD L, et al. ZnO-PbO-B2O3 glasses as gamma-ray shielding materials[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 207(3): 257-262.
[54] [54] ZAID M H M, SIDEK H A A, MATORI K A, et al. Influence of heavy metal oxides to the mechanical and radiation shielding properties of borate and silica glass system[J]. Journal of Materials Research and Technology, 2021, 11: 1322-1330.
[56] [56] KARPUZ N. Effect of La2O3 on Magnesium Borosilicate glasses glass for radiation shielding materials in nuclear application[J]. Radiation Physics and Chemistry, 2024, 214: 111305.
[57] [57] KURUDIREK M. Heavy metal borate glasses: potential use for radiation shielding[J]. Journal of Alloys and Compounds, 2017, 727: 1227-1236.
[58] [58] SAYYED M I, ELHOUICHET H. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses[J]. Radiation Physics and Chemistry, 2017, 130: 335-342.
[60] [60] CHANTHIMA N, KAEWKHAO J, LIMKITJAROENPORN P, et al. Development of BaO-ZnO-B2O3 glasses as a radiation shielding material[J]. Radiation Physics and Chemistry, 2017, 137: 72-77.
[61] [61] VERMA S, SANGHI S K, AMRITPHALE S S. Development of advanced, non-toxic, X-ray radiation shielding glass possessing barium, boron substituted kornerupine crystallites in the glassy matrix[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28(1): 35-49.
[62] [62] SINGH S, KUMAR A, SINGH D, et al. Barium-borate-flyash glasses: As radiation shielding materials[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266(1): 140-146.
[63] [63] OPREA I I, HESSE H, BETZLER K. Optical properties of bismuth borate glasses[J]. Optical Materials, 2004, 26(3): 235-237.
[64] [64] AL-HADEETHI Y, SAYYED M I. Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code[J]. Ceramics International, 2019, 45(18): 24858-24864.
[65] [65] AL-HADEETHI Y, TIJANI S A. The use of lead-free transparent 50BaO-(50-x)borosilicate-xBi2O3 glass system as radiation shields in nuclear medicine[J]. Journal of Alloys and Compounds, 2019, 803: 625-630.
[66] [66] SAYYED M I, TEKIN H O, ALTUNSOY E E, et al. Radiation shielding study of tellurite tungsten glasses with different antimony oxide as transparent shielding materials using MCNPX code[J]. Journal of Non Crystalline Solids, 2018, 498: 167-172.
[69] [69] CHEN P, MA B G, TAN H B, et al. Utilization of Barium slag to improve chloride-binding ability of cement-based material[J]. Journal of Cleaner Production, 2021, 283: 124612.
[72] [72] SOPAPAN P, LAOPAIBOON J, JAIBOON O, et al. Feasibility study of recycled CRT glass on elastic and radiation shielding properties used as X-ray and gamma-ray shielding materials[J]. Progress in Nuclear Energy, 2020, 119: 103149.
[73] [73] VANI P, VINITHA G, SAYYED M I, et al. Effect of rare earth dopants on the radiation shielding properties of barium tellurite glasses[J]. Nuclear Engineering and Technology, 2021, 53(12): 4106-4113.
[74] [74] BOODAGHI MALIDARRE R, AKKURT I. A Monte Carlo study on attenuation characteristics of colemanite- and barite-containing resources irradiated by 252Cf source against neutron-gamma photon[J]. Polymer Bulletin, 2022, 79(9): 7843-7870.
[76] [76] SHAABAN K S, ALYOUSEF H A, ABD EL-REHIM A F. CeO2 reinforced B2O3-SiO2-MoO3 glass system: a characterization study through physical, mechanical and gamma/neutron shields characteristics[J]. Silicon, 2022, 14(17): 12001-12012.
[78] [78] SHAMSHAD L, ROOH G, LIMKITJAROENPORN P, et al. A comparative study of gadolinium based oxide and oxyfluoride glasses as low energy radiation shielding materials[J]. Progress in Nuclear Energy, 2017, 97: 53-59.
[79] [79] KAEWJANG S, MAGHANEMI U, KOTHAN S, et al. New gadolinium based glasses for gamma-rays shielding materials[J]. Nuclear Engineering and Design, 2014, 280: 21-26.
[80] [80] KAEWJAENG S, KOTHAN S, CHANTHIMA N, et al. Gamma radiation shielding materials of lanthanum calcium silicoborate glasses[J]. Materials Today: Proceedings, 2018, 5(7): 14901-14906.
[81] [81] BOODAGHI M R, AKKURT I. The influence of Nd2O3 on the radiation shielding, physical, mechanical, and acoustic properties of the (75-x)TeO2-15MgO-10Na2O-xNd2O3 glasses as a potent radiation shielding material[J]. Polymer Composites, 2022, 43(8): 5418-5425.
Get Citation
Copy Citation Text
SONG Zifeng, WANG Chen, ZHANG Yong. Research Progress on Glass-Based Neutron and Gamma-Ray Shielding Materials[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(10): 3824
Category:
Received: Mar. 15, 2024
Accepted: Jan. 17, 2025
Published Online: Jan. 17, 2025
The Author Email: Yong ZHANG (yzhang@mail.tsinghua.edu.cn)
CSTR:32186.14.