Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 2032(2024)
Surface Modification and Electrochemical Performance of Spinel LiNi0.5Mn1.5O4 Cathode Material with Li3PO4 Coating
[1] [1] ZHONG Q, BONAKDARPOUR A, ZHANG M, et al. Synthesis and electrochemistry of LiNixMn2-xO4[J]. J Electrochem Soc, 1997, 144: 205-213.
[2] [2] AMINE K, TUKAMOTO H, YASUDA H, et al. A new three-volt spinel Li1+xMn1.5Ni0.5O4 for secondary lithium batteries[J]. J Electrochem Soc, 1996, 143(5): 1607-1613.
[3] [3] XU G J, LIU Z H, ZHANG C J, et al. Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures[J]. J Mater Chem A, 2015, 3(8): 4092-4123.
[4] [4] KIM J H, PIECZONKA N P W, YANG L. Challenges and approaches for high-voltage spinel lithium-ion batteries[J]. Chemphyschem, 2014, 15(10): 1940-1954.
[5] [5] SANTHANAM R, RAMBABU B. Research progress in high voltage spinel LiNi0.5Mn1.5O4 material[J]. J Power Sources, 2010, 195(17): 5442-5451.
[6] [6] MANTHIRAM A, CHEMELEWSKI K, LEE E S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries[J]. Energy Environ Sci, 2014, 7(4): 1339-1350.
[7] [7] LIU G Q, WEN L, LIU Y M. Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries[J]. J Solid State Electrochem, 2010, 14(12): 2191-2202.
[8] [8] AURBACH D. The electrochemical behavior of lithium salt solutions of γ-butyrolactone with noble metal electrodes[J]. J Electrochem Soc, 1989, 136(4): 906-913.
[9] [9] LI X B, CHEN Y J, NGUYEN C C, et al. Stability of inactive components of cathode laminates for lithium ion batteries at high potential[J]. J Electrochem Soc, 2014, 161(4): A576-A582.
[10] [10] FANG X, DING N, FENG X Y, et al. Study of LiNi0.5Mn1.5O4 synthesized via a chloride-ammonia co-precipitation method: Electrochemical performance, diffusion coefficient and capacity loss mechanism[J]. Electrochim Acta, 2009, 54(28): 7471-7475.
[11] [11] HAI B, SHUKLA A K, DUNCAN H, et al. The effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode materials[J]. J Mater Chem A, 2013, 1(3): 759-769.
[12] [12] CHEMELEWSKI K R, SHIN D W, LI W, et al. Octahedral and truncated high-voltage spinel cathodes: The role of morphology and surface planes in electrochemical properties[J]. J Mater Chem A, 2013, 1(10): 3347-3354.
[13] [13] CHEMELEWSKI K R, LEE E S, LI W, et al. Factors influencing the electrochemical properties of high-voltage spinel cathodes: Relative impact of morphology and cation ordering[J]. Chem Mater, 2013, 25(14): 2890-2897.
[14] [14] LEE B Y, CHU C T, KRAJEWSKI M, et al. Temperature-controlled synthesis of spinel lithium nickel manganese oxide cathode materials for lithium-ion batteries[J]. Ceram Int, 2020, 46(13): 20856-20864.
[15] [15] LIN M X, BEN L B, SUN Y, et al. Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle[J]. Chem Mater, 2015, 27(1): 292-303.
[16] [16] YANG X J, YANG T, LIANG S S, et al. Modification of LiNi0.5Mn1.5O4 high potential cathode from the inner lattice to the outer surface with Cr3+-doping and Li+-conductor coating[J]. J Mater Chem A, 2014, 2(27): 10359-10364.
[17] [17] CHO J H, PARK J H, LEE M H, et al. A polymer electrolyte-skinned active material strategy toward high-voltage lithium ion batteries: A polyimide-coated LiNi0.5Mn1.5O4 spinel cathode material case[J]. Energy Environ Sci, 2012, 5(5): 7124-7131.
[18] [18] CHONG J, XUN S D, ZHANG J P, et al. Li3PO4-coated LiNi0.5Mn1.5O4: A stable high-voltage cathode material for lithium-ion batteries[J]. Chemistry, 2014, 20(24): 7479-7485.
[19] [19] YAN J Q, YUAN M L, XIE S, et al. Improving the electrochemical performance of LiNi0.5Mn1.5O4 cathode material by a coating of manganese phosphate[J]. J Mater Res, 2023, 38(5): 1293-1303.
[20] [20] XU M, YANG M, CHEN M F, et al. Enabling structural and interfacial stability of 5 V spinel LiNi0.5Mn1.5O4 cathode by a coherent interface[J]. J Energy Chem, 2023, 76: 266-276.
[21] [21] KUENZEL M, KIM G T, ZARRABEITIA M, et al. Crystal engineering of TMPOx-coated LiNi0.5Mn1.5O4 cathodes for high-performance lithium-ion batteries[J]. Mater Today, 2020, 39: 127-136.
[22] [22] CHANG Q, WEI A J, LI W, et al. Structural and electrochemical characteristics of Al2O3-modified LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries[J]. Ceram Int, 2019, 45(4): 5100-5110.
[23] [23] BEN L B, YU H L, WU Y D, et al. Ta2O5 coating as an HF barrier for improving the electrochemical cycling performance of high-voltage spinel LiNi0.5Mn1.5O4 at elevated temperatures[J]. ACS Appl Energy Mater, 2018: acsaem.8b01139.
[24] [24] CHU C T, MONDAL A, KOSOVA N V, et al. Improved high- temperature cyclability of AlF3 modified spinel LiNi0.5Mn1.5O4 cathode for lithium-ion batteries[J]. Appl Surf Sci, 2020, 530: 147169.
[25] [25] XU X X, YANG J, WANG Y Q, et al. LiNi0.5Mn1.5O3.975F0.05 as novel 5 V cathode material[J]. J Power Sources, 2007, 174(2): 1113-1116.
[26] [26] LIANG G M, WU Z B, DIDIER C, et al. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping[J]. Angew Chem Int Ed Engl, 2020, 59(26): 10594-10602.
[27] [27] KIM J H, MYUNG S T, YOON C S, et al. Effect of Ti substitution for Mn on the structure of LiNi0.5Mn1.5-xTixO4 and their electrochemical properties as lithium insertion material[J]. J Electrochem Soc, 2004, 151(11): A1911.
[28] [28] LIU G Q, YUAN W S, LIU G Y, et al. The electrochemical properties of LiNi0.5Mn1.2Ti0.3O4 compound[J]. J Alloys Compd, 2009, 484(1-2): 567-569.
[29] [29] LIU J, MANTHIRAM A. Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.5O4[J]. J Phys Chem C, 2009, 113(33): 15073-15079.
[30] [30] LIU B, LIU J, YANG J, et al. Ab initio thermodynamic optimization of Ni-rich Ni-Co-Mn oxide cathode coatings[J]. J Power Sources, 2020, 450: 227693.
[31] [31] LIU B, SHI X W, GU L H, et al. Insights into LiMXO4F (M—X= Al—P and Mg—S) as cathode coatings for high-performance lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2022, 14(39): 44859-44868.
[32] [32] KRESSE G, FURTHMüLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6(1): 15-50.
[33] [33] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169-11186.
[34] [34] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868
Get Citation
Copy Citation Text
LIU Na. Surface Modification and Electrochemical Performance of Spinel LiNi0.5Mn1.5O4 Cathode Material with Li3PO4 Coating[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 2032
Category:
Received: Oct. 17, 2023
Accepted: --
Published Online: Aug. 26, 2024
The Author Email: Na LIU (liun@catl.com)