Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 1820(2024)
Photocatalytic Water Splitting into Hydrogen Production with S-Scheme CoWO4/ZnIn2S4 Heterojunctions
[1] [1] GUO B R, DING Y N, HUO H H, et al. Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis[J]. Nanomicro Lett, 2023, 15(1): 57.
[2] [2] TANG T H, ZOU J S, LUO F, et al. Cu2+-doped BiOIO3 prepared by hydrothermal fabrication nanosheets for photocatalytic oxidation of gaseous mercury under visible light[J]. Fuel, 2022, 311: 122513.
[3] [3] WANG S, DU X, YAO C H, et al. S-scheme heterojunction/Schottky junction tandem synergistic effect promotes visible-light-driven catalytic activity[J]. Nano Res, 2023, 16(2): 2152-2162.
[4] [4] QIN Y Y, LU J, MENG F Y, et al. Rationally constructing of a novel 2D/2D WO3/Pt/g-C3N4 Schottky-Ohmic junction towards efficient visible-light-driven photocatalytic hydrogen evolution and mechanism insight[j]. j colloid interface sci, 2021, 586: 576-587.
[5] [5] CHEN W, CHANG L, REN S B, et al. Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal[J]. J Hazard Mater, 2020, 384: 121308.
[6] [6] JIA G R, WANG Y, CUI X Q, et al. Highly carbon-doped TiO2 derived from MXene boosting the photocatalytic hydrogen evolution[J]. ACS Sustainable Chem Eng, 2018, 6(10): 13480-13486.
[7] [7] YU W L, YIN J, LI Y, et al. Ag2S quantum dots as an infrared excited photocatalyst for hydrogen production[J]. ACS Appl Energy Mater, 2019, 2(4): 2751-2759.
[8] [8] WANG X F, RUAN Y E, FENG S J, et al. Ag clusters anchored conducting polyaniline As highly efficient cocatalyst for Cu2ZnSnS4 nanocrystals toward enhanced photocatalytic hydrogen generation[J]. ACS Sustainable Chem Eng, 2018, 6(9): 11424-11432.
[9] [9] LIU Y, ZHANG Z Y, FANG Y R, et al. IR-Driven strong plasmonic-coupling on Ag nanorices/W18O49 nanowires heterostructures for photo/thermal synergistic enhancement of H2 evolution from ammonia borane[J]. Appl Catal B Environ, 2019, 252: 164-173.
[10] [10] WANG J J, HU C, ZHANG Y H, et al. Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution[J]. Chin J Catal, 2022, 43(5): 1277-1285.
[11] [11] LIU L Z, LI M T, CHEN F, et al. Recent advances on single-atom catalysts for CO2 reduction[J]. Small Struct, 2023, 4(3): 2200188.
[12] [12] ZHOU Q X, GUO Y, ZHU Y F. Photocatalytic sacrificial H2 evolution dominated by micropore-confined exciton transfer in hydrogen-bonded organic frameworks[J]. Nat Catal, 2023, 6: 574-584.
[13] [13] SHI X W, DAI C, WANG X, et al. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution[J]. Nat Commun, 2022, 13(1): 1287.
[14] [14] TANG Hua, LIU Yue, WANG Lele, et al. J Chin Ceram Soc, 2023, 51(1): 14-22.
[15] [15] XIA M Y, YAN X Q, LI H, et al. Well-designed efficient charge separation in 2D/2D N doped La2Ti2O7/ZnIn2S4 heterojunction through band structure/morphology regulation synergistic effect[J]. Nano Energy, 2020, 78: 105401.
[16] [16] JIANG Zicong, ZHANG Liuyang, YU Jiaguo. J Chin Ceram Soc, 2023, 51(1): 73-81.
[17] [17] CHAO Y G, ZHOU P, LAI J P, et al. Ni1-xCoxSe2C/ZnIn2S4 hybrid nanocages with strong 2D/2D hetero-interface interaction enable efficient H2-releasing photocatalysis[J]. Adv Funct Materials, 2021, 31(24): 2100923.
[18] [18] FENG C J, GU Q Y, RONG J, et al. Porous dual Z-scheme InOOH/RCN/CoWO4 heterojunction with enhanced photothermal- photocatalytic properties towards norfloxacin degradation[J]. Sep Purif Technol, 2023, 308: 122890.
[19] [19] XIAO Y, PENG Z Y, ZHANG W L, et al. Self-assembly of Ag2O quantum dots on the surface of ZnIn2S4 nanosheets to fabricate p-n heterojunctions with wonderful bifunctional photocatalytic performance[J]. Appl Surf Sci, 2019, 494: 519-531.
[20] [20] CHEN C, HOU W Q, XU Y M. Significantly increased production of H2 on ZnIn2S4 under visible light through co-deposited CoWO4 and Co3O4[J]. Appl Catal B Environ, 2022, 316: 121676.
[21] [21] ZHANG H Y, TIAN W J, LI Y G, et al. Heterostructured WO3@CoWO4 bilayer nanosheets for enhanced visible-light photo, electro and photoelectro-chemical oxidation of water[J]. J Mater Chem A, 2018, 6(15): 6265-6272.
[22] [22] SUN G X, LIU D Y, LI M, et al. Atomic coordination structural dynamic evolution of single-atom Mo catalyst for promoting H2 activation in slurry phase hydrocracking[J]. Sci Bull, 2023, 68(5): 503-515.
[23] [23] NIU J, SONG Z L, GAO X, et al. Construction of Bi2WO6 composites with carbon-coated Cu2O for effective degradation of tetracycline[J]. J Alloys Compd, 2021, 884: 161292.
[24] [24] GUO Z Y, ZHU A T, FANG R H, et al. Recent developments in nanoparticle-based photo-immunotherapy for cancer treatment[J]. Small Methods, 2023, 7(5): e2300252.
[25] [25] DAI M, HE Z L, ZHANG P, et al. ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution[J]. J Mater Sci Technol, 2022, 122: 231-242.
[26] [26] ZHANG T X, WANG T, MENG F L, et al. Recent advances in ZnIn2S4-based materials towards photocatalytic purification, solar fuel production and organic transformations[J]. J Mater Chem C, 2022, 10(14): 5400-5424.
[27] [27] WANG X H, WANG X H, SHI T Y, et al. Janus Z-scheme heterostructure of ZnIn2S4/MoSe2/In2Se3 for efficient photocatalytic hydrogen evolution[J]. J Colloid Interface Sci, 2023, 642: 669-679.
[28] [28] LI B F, WEI F, SU B, et al. Mesoporous cobalt tungstate nanoparticles for efficient and stable visible-light-driven photocatalytic CO2 reduction[J]. Mater Today Energy, 2022, 24: 100943.
[29] [29] JHA S, MEHTA S, CHEN E, et al. Bimetallic tungstate nanoparticle-decorated-lignin electrodes for flexible supercapacitors[J]. Mater Adv, 2020, 1(6): 2124-2135.
[30] [30] CHANDRASEKARAN S, YAO L, DENG L B, et al. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond[J]. Chem Soc Rev, 2019, 48(15): 4178-4280.
[31] [31] WANG Y J, LI Y, CAO S W, et al. Ni-P cluster modified carbon nitride toward efficient photocatalytic hydrogen production[J]. Chin J Catal, 2019, 40(6): 867-874.
[32] [32] FAN H T, WU Z, LIU K C, et al. Fabrication of 3D CuS@ZnIn2S4 hierarchical nanocages with 2D/2D nanosheet subunits p-n heterojunctions for improved photocatalytic hydrogen evolution[J]. Chem Eng J, 2022, 433: 134474.
[33] [33] WANG S B, WANG Y, ZHANG S L, et al. Supporting ultrathin ZnIn2 S4 nanosheets on Co/N-doped graphitic carbon nanocages for efficient photocatalytic H2 generation[J]. Adv Mater, 2019, 31(41): e1903404.
[34] [34] LI C X, CHE H N, YAN Y S, et al. Z-scheme AgVO3/ZnIn2S4 photocatalysts: “One Stone and Two Birds” strategy to solve photocorrosion and improve the photocatalytic activity and stability[J]. Chem Eng J, 2020, 398: 125523.
[35] [35] XI J J, WANG H, ZHANG B H, et al. Novel molecularly imprinted photoelectrochemical sensor for rutin based on Bi2S3/ZnIn2S4 heterojunction[J]. Sens Actuat B Chem, 2020, 320: 128409.
[36] [36] WANG Y, SHI R, SONG K, et al. Constructing a 2D/2D interfacial contact in ReS2/TiO2 via Ti-S bond for efficient charge transfer in photocatalytic hydrogen production [J]. J Mater Chem A, 2021, 9(47): 27084-27094.
Get Citation
Copy Citation Text
YAN Aihua, ZHANG Jixu, ZHANG Xiaohui, HUANG Fei, GAO Ye, ZHAO Wenxue, ZHANG Tongyang. Photocatalytic Water Splitting into Hydrogen Production with S-Scheme CoWO4/ZnIn2S4 Heterojunctions[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 1820
Special Issue:
Received: Aug. 23, 2023
Accepted: --
Published Online: Aug. 26, 2024
The Author Email: Fei HUANG (huangfei7804@163.com)