Laser Journal, Volume. 45, Issue 8, 69(2024)
Deformable feature fusion 3D vehicle detection of unmanned vehicle system
[1] [1] Huang F, Chen S, Wang Q, et al. Using deep learning in an embedded system for real-time target detection based on images from an unmanned aerial vehicle: Vehicle detection as a case study[J]. International Journal of Digital Earth, 2023, 16(1): 910-936.
[2] [2] Hamzenejadi M H, Mohseni H. Fine-tuned YOLOv5 for real-time vehicle detection in UAV imagery: Architectural improvements and performance boost[J]. Expert Systems with Applications, 2023: 120845.
[3] [3] Vakil A, Liu J, Zulch P, et al. A survey of multimodal sensor fusion for passive RF and EO information integration[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(7): 44-61.
[4] [4] Piechocki R J, Wang X, Bocus M J. Multimodal sensor fusion in the latent representation space[J]. Scientific Reports, 2023, 13(1): 2005.
[6] [6] Zhao L, Zhou H, Zhu X, et al. Lif-seg: Lidar and camera image fusion for 3d lidar semantic segmentation[J]. IEEE Transactions on Multimedia, 2023, 9:01156-01160.
[7] [7] Xu X, Zhang L, Yang J, et al. A review of multi-sensor fusion slam systems based on 3D LIDAR[J]. Remote Sensing, 2022, 14(12): 2835.
[8] [8] Zhang X, Wwang L, Zhang G, et al. RI-Fusion: 3D object detection using enhanced point features with range-image fusion for autonomous driving[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 72: 1-13.
[9] [9] Ku J, Mozifian M, Lee J, et al. Joint 3d proposal generation and object detection from view aggregation[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 1-8.
[10] [10] Wang Z, Jia K. Frustum convnet: Sliding frustums to aggregate local point-wise features for amodal 3d object detection[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 1742-1749.
[11] [11] He C, Li R, Li S, et al. Voxel set transformer: A set-to-set approach to 3d object detection from point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 8417-8427.
[12] [12] Yang Z, Sun Y, Liu S, et al. 3dssd: Point-based 3d single stage object detector[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 11040-11048.
[13] [13] Zhang Y, Chen J, Huang D. Cat-det: Contrastively augmented transformer for multi - modal 3d object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 908-917.
[15] [15] Yan Y, Mao Y, Li B. SECOND: Sparsely Embedded Convolutional Detection[J]. Sensors, 2018, 18(10): 186-194.
[16] [16] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, et al. MixUp: Beyond empirical risk minimization[J]. arXiv preprint arXiv, 2017, 09412:1-12.
[17] [17] Jian S, Kaiming H, Shaoqing R, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition. 2016: 770-778.
[18] [18] Tolstikhin I O, Houlsby N, Kolesnikov A, et al. Mlp-mixer: An all-mlp architecture for vision[J]. Advances in neural information processing systems, 2021, 34: 24261-24272.
[19] [19] Cho K, Van M B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv: 1406.1078, 2014.
[20] [20] Wang C, Zhou J. An adaptive index smoothing loss for face anti-spoofing[J]. Pattern Recognition Letters, 2022, 153: 168-175.
Get Citation
Copy Citation Text
WU Xiru, LIN Yurui. Deformable feature fusion 3D vehicle detection of unmanned vehicle system[J]. Laser Journal, 2024, 45(8): 69
Category:
Received: Jan. 3, 2024
Accepted: Dec. 20, 2024
Published Online: Dec. 20, 2024
The Author Email: