Chinese Physics B, Volume. 29, Issue 10, (2020)
Twisting mode of supercoil leucine-rich domain mediates peptide sensing in FLS2–flg22–BAK1 complex
Fig. 1. FLS2–BAK1 interface correlation is enhanced upon the flg22 binding. The horizontal axis indicates the interface residues in BAK1, and the vertical axis shows the interface residues in FLS2. (a) Interface correlation of FLS2–BAK1 without flg22; (b) with flg22.
Fig. 2. (a), (c) Pitch length and (b), (d) radius distribution of FLS2 superhelix structure for FLS2, FLS2–flg22, and FLS2–flg22–BAK1 at the start (upper panel) and end (lower panel) episodes of the whole 200 ns MD simulations. From left to right, pitch length and its variance decrease. The radius also fluctuates less and slightly decreases.
Fig. 3. First 3 dominant normal modes of FLS2. (a) Left: mode 1 (side view) shows the bending motion with two ends moving asynchronously; Middle: mode 2 (top view) shows the twisting motion with two ends rotating around the center axis in opposite directions; Right: mode 3 (side view) shows another bending motion with two synchronous ends. (b) The
Fig. 4. Principal component analysis of FLS2 MD trajectory. (a) The
Fig. 5. (a) Explained variance ratio by the top 10 PCs in PCA. Top 3 components (bending1, bending2, and twisting mode) contribute to around 70% of the variance; (b) Correlation of the top 3 components of PCA and the top 3 modes of ANM. PC1 matches best with NM1 (Pearson correlation coefficient 0.96); PC2 corresponds to NM3 (0.93); PC3 to NM2 (0.86). (c) Top PCs and NMs projection correlation. The projection coefficients of the FLS2 MD structures correlate well for PC1–NM1 (left), PC2–NM3 (center), and PC3–NM2 (right), with the correlation coefficients indicated.
Fig. 6. Top PCs and NMs projection distribution. The distribution of projection coefficients of FLS2 structure in (a) PC1, (b) PC2, and (c) PC3 direction. The FLS2 structure in the three different complexes shows no obvious difference in PC1 and PC2 directions while shows an obvious global shift for FLS2, FLS2–flg22, and FLS2–flg22–BAK1 conditions, with FLS2–flg22 being the intermediate state.
Fig. 7. Proposed interaction mechanism of the FLS2–flg22–BAK1 complex. (a) Interaction of FLS2–flg22–BAK1. N- and C-terminal ends of flg22 interact with At-FLS2 and promote the binding of BAK1. Interaction of FLS2–flg15–BAK1 in (b)
Fig. 8. Conservation analysis of FLS2–flg22 binding sites. (a) Conservation of flg22. The N-terminus (first 7 residues) is less conserved than the C-terminus. (b) The corresponding binding sites of FLS2 with flg22 N-terminus are also less conserved than those with flg22 C-terminus.
Get Citation
Copy Citation Text
Zhi-Chao Liu, Qin Liu, Chan-You Chen, Chen Zeng, Peng Ran, Yun-Jie Zhao, Lei Pan. Twisting mode of supercoil leucine-rich domain mediates peptide sensing in FLS2–flg22–BAK1 complex[J]. Chinese Physics B, 2020, 29(10):
Received: Jun. 23, 2020
Accepted: --
Published Online: Apr. 21, 2021
The Author Email: Zhao Yun-Jie (leipan@jhun.edu.cn)