High Power Laser and Particle Beams, Volume. 33, Issue 12, 123005(2021)

Thinned array optimization based on genetic model improved artificial bee colony algorithm

Jianbang Sun1... Jianbing Li1,*, Ding Wang1, Yuqi Sun2 and [in Chinese]1 |Show fewer author(s)
Author Affiliations
  • 1Strategic Support Force Information Engineering University, Zhengzhou 450001, China
  • 2Wuhan Library, Chinese Academy of Sciences, Wuhan 430071, China
  • show less
    Figures & Tables(10)
    Uniform linear array
    Thinned array
    Neighborhood search method of artificial bee colony algorithm
    Global artificial bee colony algorithm neighborhood search method
    Optimization results of GMIABC algorithm at different sparsity rates
    Comparison of array sparsity optimization between GMIABC, GA and ABC algorithms when sparsity rate η=70%
    Comparison of array sparsity optimization between GMIABC algorithm and in Ref. [27] algorithm
    • Table 1. Benchmark numerical functions

      View table
      View in Article

      Table 1. Benchmark numerical functions

      functionexpressionrangeminimum value
      Sphere$ {f}_{1}\left(x\right)={\displaystyle\sum }_{i=1}^{D}{x}_{i}^{2} $$ {\left[-\mathrm{100,100}\right]}^{D} $0
      Elliptic$ {f}_{2}\left(x\right)={\displaystyle\sum }_{i=1}^{D}{{\left({10}^{6}\right)}^{\tfrac{i-1}{D-1}}}x_{i}^{2} $$ {\left[-\mathrm{100,100}\right]}^{D} $0
      SumSquare$ {f}_{3}\left(x\right)={\displaystyle\sum }_{i=1}^{D}{ix}_{i}^{2} $$ {\left[-\mathrm{10,10}\right]}^{D} $0
      Exponential${f}_{4}\left(x\right)=\mathrm{e}\mathrm{x}\mathrm{p}\left(0.5 {\displaystyle\sum }_{i=1}^{D}{x}_{i}\right)$$ {\left[-\mathrm{10,10}\right]}^{D} $0
      Rosenbrock$ {f}_{5}\left(x\right)={\displaystyle\sum }_{i}^{D-1}\left[{100\left({x}_{i+1}-{x}_{i}^{2}\right)}^{2}-{\left({x}_{i}-1\right)}^{2}\right] $$ {\left[-\mathrm{5,10}\right]}^{D} $0
      Rastrigin$ {f}_{6}\left(x\right)={\displaystyle\sum }_{i}^{D}\left[{x}_{i}^{2}-10\mathrm{cos}\left(2\pi {x}_{i}\right)+10\right] $$ {\left[-\mathrm{5.12,5.12}\right]}^{D} $0
      Himmelblau$ {f}_{7}\left(x\right)=1/\mathrm{D}{\displaystyle\sum }_{i}^{D}\left[{x}_{i}^{4}-16{x}_{i}^{2}+5{x}_{i}\right] $$ {\left[-\mathrm{5,5}\right]}^{D} $−78.33236
    • Table 2. Comparison of GMIABC, ABC and GABC algorithms

      View table
      View in Article

      Table 2. Comparison of GMIABC, ABC and GABC algorithms

      algorithm$ {f}_{1}\left(x\right) $$ {f}_{2}\left(x\right) $$ {f}_{3}\left(x\right) $$ {f}_{4}\left(x\right) $$ {f}_{5}\left(x\right) $$ {f}_{6}\left(x\right) $$ {f}_{7}\left(x\right) $
      ABCmean2.42e−154.52e−87.32e–157.18e−214.75e−011.34e−13−78.332
      std3.20e−154.83e−88.18e−157.21e−215.81e−011.97e−130
      GABCmean5.12e−164.19e−165.25e–157.18e−239.71e−020−78.332
      std4.35e−174.25e−166.18e−157.07e−231.01e−0103.13e−15
      GAmean1.23e−134.47e−128.10e−1104.1675e−050−78.332
      std1.63e−135.77e−127.82e−1105.0100e−0501.0974e−14
      GMIABCmean3.73e−234.99e−213.57e−2001.910158e−070−78.33233
      std4.16e−231.21e−206.93e−2002.110158e−0700
    • Table 3. Comparison of sparsity optimization between GMIABC and GA, ABC and ABCSIM algorithms

      View table
      View in Article

      Table 3. Comparison of sparsity optimization between GMIABC and GA, ABC and ABCSIM algorithms

      algorithmmin/dBmean/dBstdmin/dBmean/dBstdmin/dBmean/dBstdmin/dBmean/dBstd
      η=50%(Nt= 50) η=60%(Nt=60) η=70%(Nt=70) η=80%(Nt=80)
      GA−15.935−15.6770.189−18.121−17.5210.353−19.378−19.1100.187−20.941−20.7520.178
      ABC−15.330−15.0610.237−16.806−16.5630.207−18.386−17.7220.423−19.836−18.4300.967
      ABCSIM−17.211−16.8630.262−17.426−17.1580.217−18.202−17.5880.429−18.172−17.7640.331
      GMIABC min/dB−18.541−18.2810.227−19.368−19.2000.135−21.365−20.8920.171−21.338−21.5730.175
    Tools

    Get Citation

    Copy Citation Text

    Jianbang Sun, Jianbing Li, Ding Wang, Yuqi Sun, [in Chinese]. Thinned array optimization based on genetic model improved artificial bee colony algorithm[J]. High Power Laser and Particle Beams, 2021, 33(12): 123005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Basic Theory of Complex Electromagnetic Environment

    Received: Jun. 11, 2021

    Accepted: --

    Published Online: Dec. 21, 2021

    The Author Email: Li Jianbing (49286894@qq.com)

    DOI:10.11884/HPLPB202133.210233

    Topics