Journal of Semiconductors, Volume. 42, Issue 4, 041304(2021)

Photonic devices based on thin-film lithium niobate on insulator

Shuai Yuan, Changran Hu, An Pan, Yuedi Ding, Xuanhao Wang, Zhicheng Qu, Junjie Wei, Yuheng Liu, Cheng Zeng, and Jinsong Xia
References(48)

[1] D Marpaung, C Roeloffzen, R Heideman et al. Integrated microwave photonics. Laser Photonics Rev, 7, 506(2013).

[2] W N Ye, Y L Xiong. Review of silicon photonics: History and recent advances. J Mod Opt, 60, 1299(2013).

[3] D Thomson, A Zilkie, J E Bowers et al. Roadmap on silicon photonics. J Opt, 18, 073003(2016).

[4] J J G M van der Tol, Y Q Jiao, L F Shen et al. Indium phosphide integrated photonics in membranes. IEEE J Sel Top Quantum Electron, 24, 1(2018).

[5] C Wang, M Zhang, B Stern et al. Nanophotonic lithium niobate electro-optic modulators. Opt Express, 26, 1547(2018).

[6] C Wang, M Zhang, X Chen et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

[7] Y He, Q F Yang, J W Ling et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138(2019).

[8] Y Sua, J Y Chen, Y P Huang. Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched PPLN waveguide. Opt Lett, 43, 2965(2018).

[9] T J Wang, C H Chu, C Y Lin. Electro-optically tunable microring resonators on lithium niobate. Opt Lett, 32, 2777(2007).

[10] J Chiles, S Fathpour. Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics. Optica, 1, 350(2014).

[11] V E Stenger, J Toney, A PoNick et al. Low loss and low vpi thin film lithium niobate on quartz electro-optic modulators. European Conference on Optical Communication (ECOC), 1(2017).

[12]

[13] C Wang, M Zhang, M Yu et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat Commun, 10, 978(2019).

[14] M X Li, J W Ling, Y He et al. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun, 11, 4123(2020).

[15] S Han, L Cong, Y K Srivastava et al. All-dielectric active terahertz photonics driven by bound states in the continuum. Adv Mater, 31, e1901921(2019).

[16] M Xu, M He, H Zhang et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat Commun, 11, 3911(2020).

[17] T J Kippenberg, R Holzwarth, S A Diddams. Microresonator-based optical frequency combs. Science, 332, 555(2011).

[18] T Herr, V Brasch, J D Jost et al. Temporal solitons in optical microresonators. Nat Photonics, 8, 145(2014).

[19] P Marin-Palomo, J N Kemal, M Karpov et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274(2017).

[20] R DeSalvo, A A Said, D J Hagan et al. Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids. IEEE J Quantum Electron, 32, 1324(1996).

[21] M Zhang, C Wang, R Cheng et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536(2017).

[22] M Zhang, B Buscaino, C Wang et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373(2019).

[23] A Pan, C R Hu, C Zeng et al. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide. Opt Express, 27, 35659(2019).

[24] K Liu, C Ye, S Khan et al. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photonics Rev, 9, 172(2015).

[25] A Faraon, J Vučković. Local temperature control of photonic crystal devices via micron-scale electrical heaters. Appl Phys Lett, 95, 043102(2009).

[26] B R Bennett, R A Soref, J A del Alamo. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J Quantum Electron, 26, 113(1990).

[27] C Baker, W Hease, D T Nguyen et al. Photoelastic coupling in gallium arsenide optomechanical disk resonators. Opt Express, 22, 14072(2014).

[28] L Midolo, A Schliesser, A Fiore. Nano-opto-electro-mechanical systems. Nat Nanotechnol, 13, 11(2018).

[29] R S Weis, T K Gaylord. Lithium niobate: Summary of physical properties and crystal structure. Appl Phys A, 37, 191(1985).

[30]

[31] S B Gong, G Piazza. Design and analysis of lithium–niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering. IEEE Trans Microw Theory Tech, 61, 403(2013).

[32] G Poberaj, H Hu, W Sohler et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev, 6, 488(2012).

[33] W T Jiang, R N Patel, F M Mayor et al. Lithium niobate piezo-optomechanical crystals. Optica, 6, 845(2019).

[34] L T Cai, A Mahmoud, M Khan et al. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Res, 7, 1003(2019).

[35] L B Shao, M J Yu, S Maity et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 6, 1498(2019).

[36]

[37] J T Nagy, R M Reano. Reducing leakage current during periodic poling of ion-sliced x-cut MgO doped lithium niobate thin films. Opt Mater Express, 9, 3146(2019).

[38] C Wang, C Langrock, A Marandi et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438(2018).

[39] Y F Niu, C Lin, X Y Liu et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl Phys Lett, 116, 101104(2020).

[40] A Rao, A Rao, A Rao et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 %W−1cm−2. Opt Express, 27, 25920(2019).

[41] J J Lu, J B Surya, X W Liu et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica, 6, 1455(2019).

[42] J Y Chen, Z H Ma, Y Sua et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 6, 1244(2019).

[43] D Pohl, M R Escalé, M Madi et al. An integrated broadband spectrometer on thin-film lithium niobate. Nat Photonics, 14, 24(2020).

[44] N Yao, N Yao, J X Zhou et al. Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber. Opt Express, 28, 12416(2020).

[45] I Krasnokutska, J L J Tambasco, A Peruzzo. Nanostructuring of LNOI for efficient edge coupling. Opt Express, 27, 16578(2019).

[46] L Y He, L Y He, M Zhang et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Opt Lett, 44, 2314(2019).

[47] Y Pan, S H Sun, M Y Xu et al. Low fiber-to-fiber loss, large bandwidth and low drive voltage lithium niobate on insulator modulators. Conference on Lasers and Electro-Optics, JTh2B.10(2020).

[48]

Tools

Get Citation

Copy Citation Text

Shuai Yuan, Changran Hu, An Pan, Yuedi Ding, Xuanhao Wang, Zhicheng Qu, Junjie Wei, Yuheng Liu, Cheng Zeng, Jinsong Xia. Photonic devices based on thin-film lithium niobate on insulator[J]. Journal of Semiconductors, 2021, 42(4): 041304

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Reviews

Received: Nov. 12, 2020

Accepted: --

Published Online: Jun. 17, 2021

The Author Email:

DOI:10.1088/1674-4926/42/4/041304

Topics