Journal of the Chinese Ceramic Society, Volume. 50, Issue 11, 3040(2022)
Challenges and Solutions of Lithium-Rich Manganese-Based Cathode Materials for Lithium-Ion Batteries
[1] [1] NITTA N, WU F, LEE J T, et al. Li-ion battery materials: present and future[J]. Mater Today, 2015, 18(5): 252-264.
[2] [2] GOODENOUGH JOHN B. Energy storage materials: A perspective[J]. Energy Storage Mater, 2015, 1: 158-161.
[3] [3] GOODENOUGH J B. How we made the Li-ion rechargeable battery[J]. Nat Electron, 2018, 1(3): 204-204.
[4] [4] XIE J, LU Y C. A retrospective on lithium-ion batteries[J]. Nat Commun, 2020, 11(1): 1-4.
[5] [5] KALLURI S, YOON M, JO M, et al. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells[J]. Adv Energy Mater, 2017, 7(1): 1601507.
[6] [6] WANG B, LIU T, LIU A, et al. A hierarchical porous C@LiFePO4/carbon nanotubes microsphere composite for high-rate lithium-ion batteries: combined experimental and theoretical study[J]. Adv Energy Mater, 2016, 6(16): 1600426.
[7] [7] ZHENG J C, YANG Z, HE Z J, et al. In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries[J]. Nano Energy, 2018, 53: 613-621.
[8] [8] YE Z C, QIU L, YANG W, et al. Nickel-rich layered cathode materials for lithium-ion batteries[J]. Chem A Eur J, 2021, 27(13): 4249-4269.
[9] [9] ROSSOUW M H, THACKERAY M M. Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications[J]. Mater Res Bull, 1991, 26(6): 463-473.
[10] [10] THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. J Mater Chem, 2007, 17(30): 3112-3125.
[11] [11] FREIRE M, KOSOVA N V, JORDY C, et al. A new active Li-Mn-O compound for high energy density Li-ion batteries[J]. Nat Mater, 2016, 15(2): 173-177.
[13] [13] ZHENG J, MYEONG S, CHO W, et al. Li- and Mn-rich cathode materials: Challenges to commercialization[J]. Adv Energy Mater, 2017, 7(6): 1601284.
[14] [14] BARENO J, LEI C H, WEN J G, et al. Local structure of layered oxide electrode materials for lithium-ion batteries[J]. Adv Mater, 2010, 22(10): 1122-1127.
[15] [15] ARMSTRONG A R, HOLZAPFEL M, NOVAK P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. J Am Chem Soc, 2006, 128(26): 8694-8698.
[16] [16] YU X, LYU Y, GU L, et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials[J]. Adv Energy Mater, 2014, 4(5): 1300950.
[17] [17] ZHOU C X, WANG P B, ZHANG B, et al. Formation and effect of residual lithium compounds on Li-rich cathode material Li1.35[Ni0.35Mn0.65]2[J]. Acs Appl Mater Interfaces, 2019, 11(12): 11518-11526.
[18] [18] CROY J R, BALASUBRAMANIAN M, GALLAGHER K G, et al. Review of the U. S. department of energy’s “deep dive” effort to understand voltage fade in Li- and Mn-rich cathodes[J]. Accounts Chem Res, 2015, 48(11): 2813-2821.
[19] [19] ZHAO S Q, YAN K, ZHANG J Q, et al. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries[J]. Angew Chem Intl Edn, 2021, 60(5): 2208-2220.
[20] [20] YU H J, ZHOU H S High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries[J]. J Phys Chem Lett, 2013, 4(8): 1268-1280.
[22] [22] MENG Y, CEDER G, GREY C, et al. Cation ordering in layered O3 Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0≤x≤1/2) compounds[J]. Chem Mater, 2005, 17(9): 2386-2394.
[23] [23] STOREY C, KARGINA I, GRINCOURT Y, et al. Electrochemical characterization of a new high capacity cathode[J]. J Power Sources, 2001, 97(8): 541-544.
[24] [24] JARVIS K A, DENG Z Q, ALLARD L F, et al. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution[J]. Chem Mater, 2011, 23(16): 3614-3621.
[25] [25] QIU B, ZHANG M H, WU L J, et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries[J]. Nat Commun, 2016, 7(1): 1-10.
[26] [26] THACKERAY M M, JOHNSON C S, VAUGHEY J T, et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries[J]. J Mater Chem, 2005, 15(23): 2257-2267.
[27] [27] YU H J, ISHIKAWA R, SO Y G, et al. Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries[J]. Ange Chem Int Ed, 2013, 52(23): 5969-5973
[28] [28] ZHAO S, YAN K, ZHANG J, et al. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries[J]. Angew Chem Int Ed, 2021, 60(5): 2208-2220.
[29] [29] SATHIYA M, ROUSSE G, RAMESHA K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes[J]. Nat Mater, 2013, 12(9): 827-835.
[30] [30] LI X, QIAO Y, GUO S, et al. Direct visualization of the reversible O2-/O- redox process in Li-rich cathode materials[J]. Adv Mater, 2018, 30(14): 1705197.
[31] [31] YU Y, KARAYAYLALI P, SOKARAS D, et al. Towards controlling the reversibility of anionic redox in transition metal oxides for high-energy Li-ion positive electrodes[J]. EnergyEnviron Sci, 2021, 14(4): 2322-2334.
[32] [32] RADIN M D, VINCKEVICIUTE J, SESHADRI R, et al. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials[J]. Nat Energy, 2019, 4(8): 639-646.
[33] [33] WANG J, HE X, PAILLARD E, et al. Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries[J]. Adv Energy Mater, 2016, 6(21): 1600906.
[34] [34] ARMSTRONG A R, HOLZAPFEL M, NOVAK P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. J Am Chem Soc, 2006, 128(26): 8694-8698.
[35] [35] YANG Y, QU X, ZHANG X, et al. Higher than 90% initial coulombic efficiency with staghorn-coral-like 3D porous LiFeO2-x as anode materials for Li-ion batteries[J]. Adv Mater, 2020, 32(22): 1908285.
[36] [36] LI J, ZHANG L, YU L, et al. Understanding interfacial properties between Li-rich layered oxide and electrolyte containing triethyl borate[J]. J Phys Chem C, 2016, 120(47): 26899-26907.
[37] [37] MOHANTY D, LI J, ABRAHAM D P, et al. Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: Origin of the tetrahedral cations for spinel conversion[J]. Chem Mater, 2014, 26(21): 6272-6280.
[38] [38] GU M, BELHAROUAK I, ZHENG J, et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries[J]. Acs Nano, 2013, 7(1): 760-767.
[39] [39] HU E, YU X, LIN R, et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release[J]. Nat Energy, 2018, 3(8): 690-698.
[40] [40] SUN G, YU F D, QUE L F, et al. Local electronic structure modulation enhances operating voltage in Li-rich cathodes[J]. Nano Energy, 2019, 66: 2211-2855.
[41] [41] LI X, TANG M, FENG X, et al. Lithiation and delithiation dynamics of different li sites in Li-rich battery cathodes studied by operando nuclear magnetic resonance[J]. Chem Mater, 2017, 29(19): 8282-8291.
[42] [42] GAO Y, WANG X, MA J, et al. Selecting substituent elements for Li-rich Mn-based cathode materials by density functional theory (DFT) calculations[J]. Chem Mater, 2015, 27(9): 3456-3461.
[43] [43] YU H, SO Y G, KUWABARA A, et al. Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide[J]. Nano Lett, 2016, 16(5): 2907-2915.
[44] [44] CHEN L, SU Y, CHEN S, et al. Hierarchical Li1.2Ni0.2Mn0.6O2 nanoplates with exposed {010} planes as high-performance cathode material for lithium-ion batteries[J]. Adv Mater, 2014, 26(39): 6756-6760.
[45] [45] LUO D, LI G, FU C, et al. A new spinel-layered Li-rich microsphere as a high-rate cathode material for Li-ion batteries[J]. Adv Energy Mater, 2014, 4(11): 1400062.
[46] [46] JIN X, XU Q, YUAN X, et al. Synthesis, characterization and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries[J]. Electrochim Acta, 2013, 114: 605-610.
[47] [47] CHEN J, ZOU G Q, DENG W T, et al. Pseudo-bonding and electric-field harmony for Li-rich Mn-based oxide cathode[J]. Adv Funct Mater, 2020, 30(46): 2004302.
[48] [48] LI J, KLOEPSCH R, STAN M C, et al. Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability[J]. J Power Sources, 2011, 196(10): 4821-4825.
[50] [50] ZHAO C H, KANG W P, XUE Q B, et al. Polymerization- pyrolysis-assisted nanofabrication of solid solution Li1.2Ni0.13Co0.13Mn0.54O2 for lithium-ion battery cathodes[J]. J Nanoparticle Res, 2012, 14(12): 1-9.
[51] [51] SONG B H, LAI M O, LIU Z W, et al. Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries[J]. J Mater Chem A, 2013, 1(34): 9954-9965.
[52] [52] DONG S D, ZHOU Y, HAI C X, et al. Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials[J]. J Power Sources, 2020, 462: 228185.
[53] [53] LUO D, FANG S H, YANG L, et al. Improving the electrochemical performance of layered Li-rich transition-metal oxides by alleviating the blockade effect of surface lithium[J]. J Mater Chem A, 2016, 4(14): 5184-5190.
[54] [54] DU C Q, ZHANG F, MA C X, et al. Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery[J]. Ionics, 2016, 22(2): 209-218.
[55] [55] KIM G Y, YI S B, PARK Y J, et al. Electrochemical behaviors of Li[Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 cathode series (0<x<1) synthesized by sucrose combustion process for high capacity lithium ion batteries[J]. Mater Res Bull 2008, 43(12): 3543-3552.
[56] [56] LEE Y, KIM M G, CHO J. Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-ion storage material[J]. Nano Lett, 2008, 8(3): 957-961.
[57] [57] MA G, LI S, ZHANG W X, et al. A general and mild approach to controllable preparation of manganese-based micro- and nanostructured bars for high performance lithium-ion batteries[J]. Angew Chem-Int Ed, 2016, 55(11): 3667-3671.
[58] [58] LUO D, SHI P, FANG S H, et al. Unraveling the effect of exposed facets on voltage decay and capacity fading of Li-rich layered oxides[J]. J Power Sources, 2017, 364: 121-129.
[59] [59] WEI G Z, LU X, KE F S, et al. Crystal habit‐tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high‐rate performance lithium‐ion batteries[J]. Adv Mater, 2010, 22(39): 4364-4367.
[60] [60] WANG D, BELHAROUAK I, ZHOU G, et al. Nanoarchitecture multi-structural cathode materials for high capacity lithium batteries[J]. Adv Funct Mater, 2013, 23(8): 1070-1075.
[61] [61] YU F D, QUE L F, WANG Z B, et al. Layered-spinel capped nanotube assembled 3D Li-rich hierarchitectures for high performance Li-ion battery cathodes[J]. J Mater Chem A, 2016, 4(47): 18416-18425.
[62] [62] YU F D, QUE L F, WANG Z B, et al. Controllable synthesis of hierarchical ball-in-ball hollow microspheres for a high performance layered Li-rich oxide cathode material[J]. J Mater Chem A, 2017, 5(19): 9365-9376.
[63] [63] CHOI A, LIM J, KIM H J, et al. Site-selective in situ electrochemical doping for Mn-rich layered oxide cathode materials in lithium-ion batteries[J]. Adv Energy Mater, 2018, 8(11): 1702514.
[64] [64] ZOU L F, LI J Y, LIU Z Y, et al. Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability[J]. Nat Commun, 2019, 10(1): 1-11.
[65] [65] NAYAK P K, GRINBLAT J, LEVI M, et al. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries[J]. Adv Energy Mater, 2016, 6(8): 1502398.
[67] [67] ZHANG L, HE W, PENG D L, et al. A layered lithium-rich Li(Li0.2Ni0.15Mn0.55Co0.1)O2 cathode material: Surface phase modification and enhanced electrochemical properties for lithium-ion batteries[J]. Chem Electr Chem, 2019, 6(5): 1542-1551.
[68] [68] PHATTHARASUPAKUN N, GENG C, JOHNSON M B, et al. Impact of Cr doping on the voltage fade of Li-rich Mn-rich Li1.11Ni0.33Mn0.56O2 and Li1.2Ni0.2Mn0.6O2 positive electrode materials[J]. J Electrochem Soc, 2020, 167(16): 160545.
[69] [69] HE T, LU Y, SU Y F, et al. Sufficient utilization of zirconium ions to improve the structure and surface properties of nickel-rich cathode materials for lithium-ion batteries[J]. Chem Sus Chem, 2018, 11(10): 1639-1648.
[70] [70] LI Q Y, ZHOU D, ZHANG L J, et al. Tuning anionic redox activity and reversibility for a high-capacity Li-rich Mn-based oxide cathode via an integrated strategy[J]. Adv Funct Mater, 2019, 29(10): 1806706.
[71] [71] MO Y, GUO L J, CAO B K, et al. Correlating structural changes of the improved cyclability upon Nd-substitution in LiNi0.5Co0.2Mn0.3O2 cathode materials[J]. Energy Storage Mater, 2019, 18: 260-268.
[72] [72] SI M T, WANG D D, ZHAO R, et al. Local electric-field-driven fast Li diffusion kinetics at the piezoelectric LiTaO3 modified Li-rich cathode-electrolyte interphase[J]. Adv Sci, 2020, 7(3): 1902538.
[73] [73] YU R, BANIS M N, WANG C, et al. Tailoring bulk Li+ ion diffusion kinetics and surface lattice oxygen activity for high-performance lithium-rich manganese-based layered oxides[J]. Energy Storage Mater, 2021, 37: 509-520.
[74] [74] HE W, LIU P F, ZHOU Y, et al. A novel morphology-controlled synthesis of Na+-doped Li- and Mn-rich cathodes by the self-assembly of amphiphilic spherical micelles[J]. Sustain Mater Technol, 2020, 25: e00171.
[75] [75] LI Q, LI G S, FU C C, et al. K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries[J]. Acs Appl Mater Interfaces, 2014, 6(13): 10330-10341.
[76] [76] XIE Q, LI W, MANTHIRAM A A. Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries[J]. Chem Mater, 2019, 31(3): 938-946.
[77] [77] LI L, SONG B H, CHANG Y L, et al. Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material[J]. J Power Sources, 2015, 283: 162-170.
[78] [78] YAN H, LI B, YU Z, et al. First-Principles Study: Tuning the redox behavior of lithium-rich layered oxides by chlorine doping[J]. J Phys Chem C, 2017, 121(13): 7155-7163.
[79] [79] AN J, SHI L, CHEN G, et al. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries[J]. J Mater Chem A, 2017, 5(37): 19738-19744.
[80] [80] HE W, YE F J, LIN J, et al. Boosting the electrochemical performance of Li- and Mn-rich cathodes by a three-in-one strategy [J]. Nano-Micro Lett, 2021, 13(1): 1-11.
[81] [81] ZHAO Y, LIU J, WANG S, et al. Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: Implications for enhanced electrochemical performance[J]. Adv Funct Mater, 2016, 26(26): 4760-4767.
[82] [82] SONG J H, KAPYLOU A, CHOI H S, et al. Suppression of irreversible capacity loss in Li-rich layered oxide by fluorine doping[J]. J Power Sources, 2016, 313: 65-72.
[83] [83] ZHENG H F, ZHANG C Y, ZHANG Y G, et al. Manipulating the Local Electronic Structure in Li-rich Layered Cathode Towards Superior Electrochemical Performance[J]. Adv Funct Mater, 2021, 31(30): 2100783.
[84] [84] LI Q Y, NING D, ZHOU D, et al. Tuning both anionic and cationic redox chemistry of Li-rich Li1.2Mn0.6Ni0.2O2 via a “three-in-one” strategy[J]. Chem Mater, 2020, 32(21): 9404-9414.
[85] [85] HALL D S, GAUTHIER R, ELDESOKY A, et al. New chemical insights into the beneficial role of Al2O3 cathode coatings in lithium-ion cells[J]. Acs Appl Mater Interfaces, 2019, 11(15): 14095-14100.
[86] [86] ZHANG C X, FENG Y Z, WEI B, et al. Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode[J]. Nano Energy, 2020, 75: 104995.
[87] [87] ZHENG J, GU M, XIAO J, et al. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials[J]. Chem Mater, 2014, 26(22): 6320-6327.
[88] [88] ZHANG J C, ZHANG H, GAO R, et al. New insights into the modification mechanism of Li-rich Li1.2Mn0.6Ni0.2O2 coated by Li2ZrO3[J]. Phys Chem Chem Phys, 2016, 18(19): 13322-13331.
[89] [89] ZHANG X D, SHI J L, LIANG J Y, et al. Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating[J]. Adv Mater, 2018, 30(29): 1801751.
[90] [90] ZHANG W, SUN Y G, DENG H Q, et al. Dielectric polarization in inverse spinel-structured Mg2TiO4 coating to suppress oxygen evolution of Li-rich cathode materials[J]. Adv Mater, 2020, 32(19): 2000496.
[91] [91] XIA Q B, ZHAO X F, XU M Q, et al. A Li-rich layered@spinel@carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method[J]. J Mater Chem A, 2015, 3(7): 3995-4003.
[92] [92] YANG J S, LI P, ZHONG F P, et al. Suppressing voltage fading of Li-rich oxide cathode via building a well-protected and partially-protonated surface by polyacrylic acid binder for cycle-stable Li-ion batteries[J]. Advd Energy Mater, 2020, 10(15): 1904264.
[93] [93] LIU X, WANG Z, ZHUANG W, et al. Li3PO4 modification on a primary particle surface for high performance Li-rich layered oxide Li1.18Mn0.52Co0.15Ni0.15O2 via a synchronous route[J]. New J Chem, 2020, 44(9): 3584-3592.
[94] [94] QIU B, ZHANG M, WU L, et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries[J]. Nat Commun, 2016, 7(1): 12108.
[95] [95] MA Y, LIU P, XIE Q, et al. Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@spinel @carbon shells as high-rate lithium ion battery cathode[J]. Nano Energy, 2019, 59: 184-196.
[96] [96] ZHANG W, CHEN Q, WU F, et al. Peptide-based nanomaterials for gene therapy[J]. Nanoscale Adv, 2021, 3(2): 302-310.
[97] [97] LIN T, SCHULLI T U, HU Y, et al. Faster activation and slower capacity/voltage fading: A bifunctional urea treatment on lithium‐rich cathode materials[J]. Adv Funct Mater, 2020, 30(13): 1909192.
[98] [98] LI Q Y, NING D, ZHOU D, et al. The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in Li-rich cathode materials[J]. J Mater Chem A, 2020, 8(16): 7733-7745.
[99] [99] GUO W B, ZHANG C Y, ZHANG Y G, et al. A universal strategy toward the precise regulation of initial coulombic efficiency of Li-rich Mn‐based cathode materials[J]. Adv Mater, 2021, 33(38): 2103173.
[100] [100] YANG X, WANG X, ZOU G, et al. Spherical lithium-rich layered Li1.13[Mn0.534Ni0.233Co0.233]0.87O2 with concentration-gradient outer layer as high-performance cathodes for lithium ion batteries[J]. J Power Sources, 2013, 232: 338-347.
[101] [101] ZHU Z, YU D, YANG Y, et al. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment[J]. Nat Energy, 2019, 4(12): 1049-1058.
[102] [102] JU X, HOU X, LIU Z, et al. The full gradient design in Li-rich cathode for high performance lithium ion batteries with reduced voltage decay[J]. J Power Sources, 2019, 437: 226902.
[103] [103] WU T, LIU X, ZHANG X, et al. Full concentration gradient‐tailored Li‐rich layered oxides for high‐energy lithium‐ion batteries[J]. Adv Mater, 2020, 33(2): 2001358.
[104] [104] YU F D, QUE L F, XU C Y, et al. Dual conductive surface engineering of Li-rich oxides cathode for superior high-energy-density Li-ion batteries[J]. Nano Energy, 2019, 59: 527-536.
[105] [105] CHEN J, ZOU G, DENG W, et al. Pseudo‐bonding and electric‐field harmony for Li‐rich Mn‐based oxide cathode[J]. Adv Funct Mater, 2020, 30(46): 2004302.
[106] [106] LIU Y Y, YANG Z, LI J L, et al. A novel surface-heterostructured Li1.2Mn0.54Ni0.13Co0.13O2@Ce0.8Sn0.2O2-σ cathode material for Li-ion batteries with improved initial irreversible capacity loss[J]. J Mater Chem A, 2018, 6(28): 13883-13893.
[107] [107] CHAO D L, ZHU C R, YANG P H, et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance[J]. Nat Commun, 2016, 7(1): 1-8.
[108] [108] LIM S H, CHO W, KIM Y J, et al. Insight into the electrochemical behaviors of 5V-class high-voltage batteries composed of lithium-rich layered oxide with multifunctional additive[J]. J Power Sources, 2016, 336: 465-474.
[109] [109] XIAO Z, LIU J D, FAN G L, et al. Lithium bis(oxalate)borate additive in the electrolyte to improve Li-rich layered oxide cathode materials[J]. Mater Chem Frontiers, 2020, 4(6): 1689-1696.
[110] [110] LEE D J, IM D, RYU Y G, et al. Phosphorus derivatives as electrolyte additives for lithium-ion battery: The removal of O2 generated from lithium-rich layered oxide cathode[J]. J Power Sources, 2013, 243: 831-835.
[111] [111] ZHENG J M, XIAO J, GU M, et al. Interface modifications by anion receptors for high energy lithium ion batteries[J]. J Power Sources, 2014, 250: 313-318.
Get Citation
Copy Citation Text
YU Wenhua, ZHAO Liuyang, WANG Yanyan, LIU Xinpeng, LI Hongyi, WU Aimin, HUANG Hao. Challenges and Solutions of Lithium-Rich Manganese-Based Cathode Materials for Lithium-Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 3040
Category:
Received: Apr. 5, 2022
Accepted: --
Published Online: Jan. 27, 2023
The Author Email: Wenhua YU (ywhdllg@mail.dlut.edu.cn)