Semiconductor Optoelectronics, Volume. 44, Issue 5, 788(2023)

Optical Melanoma Image Detection Algorithm Based on Heavy Parameterized Large Kernel Convolution

SU Jiong... ZENG Zhigao, LIU Qiang*, YI Shengqiu, WEN Zhiqiang and YUAN Xinpan |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(19)

    [3] [3] Mohiyuddin A, Basharat A, Ghani U, et al. Breast tumor detection and classification in mammogram images using modified YOLOv5 networkJ. Computational and Mathematical Methods in Medicine, 2022, 2022: 1359019.

    [4] [4] Krader C G. AI has potential to improve melanoma detectionJ. Dermatol. Times, 2020, 41(9): 1-36.

    [5] [5] Xu J, Ren H, Cai S, et al. An improved faster R-CNN algorithm for assisted detection of lung nodulesJ. Computers in Biology and Medicine, 2023, 153: 106470.

    [6] [6] Ren S Q, He K M, Girshick R, et al. Faster RCNN: towards real-time object detection with region proposal networksJ. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.

    [7] [7] Liu W, Anguelov D, Erhan D, et al. SSD: single shot multi-box detectorC// European Conf. on Computer Vision, 2015: 21-37.

    [8] [8] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detectionC// Proc. of the 2016 IEEE Conf. on Computer Vision and Pattern Recognition, 2016: 779-788.

    [9] [9] Bisla D, Choromanska A, Berman R S, et al. Towards automated melanoma detection with deep learning: Data purification and augmentationC// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops, 2019: 2720-2728.

    [10] [10] Ali A R, Li J, O’Shea S J. Towards the automatic detection of skin lesion shape asymmetry, color variegation and diameter in dermoscopic imagesJ. PloS One, 2020, 15(6): e0234352.

    [11] [11] Gaonkar R, Singh K, Prashanth G R, et al. Lesion analysis towards melanoma detection using soft computing techniquesJ. Clinical Epidemiology and Global Health, 2020, 8(2): 501-508.

    [12] [12] Zunair H, Hamza A B. Melanoma detection using adversarial training and deep transfer learningJ. Physics in Medicine & Biology, 2020, 65(13): 135005.

    [13] [13] Zhang L, Xu F, Li Y, et al. A lightweight convolutional neural network model with receptive field block for C-shaped root canal detection in mandibular second molarsJ. Scientific Reports, 2022, 12(1): 17373.

    [14] [14] Li H L, Li J, Wei H B, et al. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehiclesJ/OL. ArXiv, 2022, 2206: 024242023628.https://arxiv.org/vc/arxiv/papers/2206/2206.02424v1.pdf.

    [15] [15] Wang J, Chen K, Xu R, et al. Carafe: Content-aware reassembly of featuresC// Proc. of the IEEE/CVF Inter. Conf. on Computer Vision, 2019: 3007-3016.

    [16] [16] Dai T, Cai J, Zhang Y, et al. Second-order attention network for single image super-resolutionC// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2019: 11065-11074.

    [17] [17] Ding X, Zhang X, Han J, et al. Scaling up your kernels to 31×31: Revisiting large kernel design in cnnsC// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2022: 11963-11975.

    [18] [18] Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learningC// Proc. of the Thirty-First AAAI Conf. on Artificial Intelligence, 2017: 4278-4284.

    [19] [19] Hu J, Shen L, Sun G. Squeeze-and-excitation networksC// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2018: 7132-7141.

    [20] [20] Codella N C, Gutman D, Dusza S, et al. Skin lesion analysis toward melanoma detectionC// 2018 IEEE 15th Inter. Symp. on Biomedical Imaging, 2018: 264-269.

    [21] [21] Lecchi T, de Almeida G M, Vivacqua R P D. Algoritmo de deep learning baseado na rede neural YOLOv5 para classificao dermastoscópicae deteco de cancer (melanoma)J. Concilium, 2022, 22(7): 813-827.

    Tools

    Get Citation

    Copy Citation Text

    SU Jiong, ZENG Zhigao, LIU Qiang, YI Shengqiu, WEN Zhiqiang, YUAN Xinpan. Optical Melanoma Image Detection Algorithm Based on Heavy Parameterized Large Kernel Convolution[J]. Semiconductor Optoelectronics, 2023, 44(5): 788

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 28, 2023

    Accepted: --

    Published Online: Nov. 20, 2023

    The Author Email: Qiang LIU (liuqiang@hut.edu.cn)

    DOI:10.16818/j.issn1001-5868.2023062801

    Topics