Journal of Innovative Optical Health Sciences, Volume. 14, Issue 4, 2130003(2021)
Plasmonic nanoparticles and nucleic acids hybrids for targeted gene delivery, bioimaging, and molecular recognition
[1] [1] X. Bai, Y. Wang, Z. Song, Y. Feng, Y. Chen, D. Zhang, L. Feng, "The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment," Int. J. Mol. Sci. 21, 2480 (2020).
[2] [2] G. Go, C.-S. Lee, Y. M. Yoon, J. H. Lim, T. H. Kim, S. H. Lee, "PrPC aptamer conjugated–gold nanoparticles for targeted delivery of doxorubicin to colorectal cancer cells," Int. J. Mol. Sci. 22(4), 1976 (2021).
[3] [3] K. Saravanakumar, A. Sathiyaseelan, A. V. A. Mariadoss, X. Hu, K. Venkatachalam, M.-H. Wang, "Nucleolin targeted delivery of aptamer tagged Trichoderma derived crude protein coated gold nanoparticles for improved cytotoxicity in cancer cells," Proc. Biochem. 102, 325–332 (2021).
[4] [4] D. Ferreira, D. Fontinha, C. Martins, D. Pires, A. R. Fernandes, P. V. Baptista, "Gold nanoparticles for vectorization of nucleic acids for cancer therapeutics," Molecules 25, 3489 (2020).
[5] [5] M. Kheiro llahpour, M. Mehrabi, N. M. Dounighi, M. Mohammadi, A. Masoudi, "Nanoparticles and vaccine development. Pharmaceutical nanotechnology," Pharma. Nanotechnol. 8(1), 6–21 (2020).
[6] [6] K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, "Gold nanoparticles in chemical and biological sensing," Chem. Rev. 112(5), 2739–2779 (2012).
[7] [7] E. Ferrari, M. Soloviev, Nanoparticles in Biology and Medicine Methods and Protocols, Springer Science+Business Media Series, New York (2020).
[8] [8] Q. Guo, F. Hu, X. Yang, J. Yang, S. Yang, X. Chen, F. Wu, S. D. Minteer "In-situ and controllable synthesis of graphene-gold nanoparticles/ molecularly imprinted polymers composite modi- fied electrode for sensitive and selective rutin detection," Microchem. J. 158, 105254 (2020).
[9] [9] T. Yang, Z. Luo, Y. Tian, C. Qian, Y. Duan, "Design strategies of AuNPs-based Nucleic Acid colorimetric biosensors," Trends Anal. Chem. 124, 115795 (2020).
[10] [10] J. Simon, S. Udayan, E. S. Bindiy, S. G. Bhat, V. P. N. Nampoori, M. Kailasnath, "Optical characterization and tunable antibacterial properties of gold nanoparticles with common proteins," Anal. Biochem. 612, 113975 (2021).
[11] [11] A. Ahmad, H. Liang, S. Ali, Q. Abbas, A. Farid, A. Ali, M. Iqbal, I. A. Khan, L. Pan, A. Abbas, Z. Farooq, "Cheap, reliable, reusable, thermally and chemically stable fluorinated hexagonal boron nitride nanosheets coated Au nanoparticles substrate for surface enhanced Raman spectroscopy," Sens. Actuators B Chem. 304, 127394 (2020).
[12] [12] M. S. Kang, S. Y. Lee, K. S. Kim, D.-W. Han, "State of the art biocompatible gold nanoparticles for cancer theragnosis," Pharmaceutics 12(8), 701 (2020).
[13] [13] L. Zhang, Y. Mazouzi, M. Salmain, B. Liedberg, S. Boujday, "Antibody-gold nanoparticle bioconjugates for biosensors: Synthesis, characterization and selected applications," Biosens. Bioelectron. 165, 112370 (2020).
[14] [14] X. Tao, X. Wang, B. Liu, J. Liu, "Conjugation of antibodies and aptamers on nanozymes for developing biosensors," Biosens. Bioelectron. 168, 112537 (2020).
[15] [15] M.-T. Chiang, H.-L. Wang, T.-Y. Han, Y.-K. Hsieh, J. Wang, D.-H. Tsai, "Assembly and detachment of hyaluronic acid on a protein-conjugated gold nanoparticle," Langmuir 36(48), 14782–14792 (2020).
[16] [16] B. Tan, F. Baycan, "A new donor-acceptor conjugated polymer-gold nanoparticles biocomposite materials for enzymatic determination of glucose," Polymer 210, 123066 (2020).
[17] [17] Y. Gao, Y. Liu, R. Yan, J. Zhou, H. Dong, X. Hua, P. Wang, "Bifunctional peptide-conjugated gold nanoparticles for precise and efficient nucleus-targeting bioimaging in live cells," Anal. Chem. 92 (19), 13595–13603 (2020).
[18] [18] Z. Wang, J. Dong, Q. Zhao, Y. Ying, L. Zhang, J. Zou, S. Zhao, J. Wang, Y. Zhao, S. Jiang, "Gold nanoparticle mediated delivery of paclitaxel and nucleic acids for cancer therapy (Review)," Mol. Med. Rep. 22(6), 4475–4484 (2020).
[19] [19] E. Aali, A. S. Rad, M. Esfahanian, "Computational investigation of the strategy of DNA/RNA stabilization through the study of the conjugation of an oligonucleotide with silver and gold nanoparticles," Appl. Organomet. Chem. 34(8), e5690 (2020).
[20] [20] Y. Hao, Y. Li, L. Song, Z. Deng, "Flash synthesis of spherical nucleic acids with record DNA density," Am. Chem. Soc. 143(8), 3065–3069 (2021).
[21] [21] O. Mukama, J. Wu, Z. Li, Q. Liang, Z. Yi, X. Lu, Y. Liu, Y. Liu, M. Hussain, G. G. Makafe, J. Liu, N. Xu, L. Zeng, "An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids," Biosens. Bioelectron. 159, 112143 (2020).
[22] [22] C. Mirkin, R. Letsinger, R. Mucic, R. C. Mucic, J. J. Storho?, "A DNA-based method for rationally assembling nanoparticles into macroscopic materials," Nature 382, 607–609 (1996).
[23] [23] L. Fang, D. Liu, Y. Wang, Y. Li, L. Song, M. Gong, Y. Li, Z. Deng, "Nanosecond-laser-based charge transfer plasmon engineering of solution-assembled nanodimers," Nano Lett. 18, 7014–7020 (2018).
[24] [24] N. Liu, T. Liedl, "DNA-assembled advanced plasmonic architectures," Chem. Rev. 118, 3032–3053 (2018).
[25] [25] W. Zhou, Q. Li, H. Liu, J. Yang, D. Liu, "Building electromagnetic hot spots in living cells via targettriggered nanoparticle dimerization," ACS Nano 11, 3532–3541 (2017).
[26] [26] J. Liu, Y. A. Lu, "Colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles," J. Am. Chem. Soc. 125, 6642–6643 (2003).
[27] [27] S. M. Taghdisi, N. M. Danesh, M. Ramezani, A. S. Emrani, K. Abnous, "Novel colorimetric aptasensor for zearalenone detection based on nontarget- induced aptamer walker, gold nanoparticles, and exonuclease-assisted recycling amplification," ACS Appl. Mater. Interfaces 10, 12504–12509 (2018).
[28] [28] Z. Long, M. Liu, L. Mao, G. Zeng, Q. Huang, H. Huang, F. Deng, Y. Wan, X. Zhang, Y. Wei, "Onestep synthesis, self-assembly and bioimaging applications of adenosine triphosphate containing amphiphilies with aggregation-induced emission feature," Mater. Sci. Eng. C Mater. Biol. Appl. 73, 252–256 (2017).
[29] [29] W. Nie, Q. Wang, L. Zou, Y. Zheng, X. Liu, X. Yang, K. Wang, "Low-fouling surface plasmon resonance sensor for highly sensitive detection of microRNA in a complex matrix based on the DNA tetrahedron," Anal. Chem. 90, 12584–12591 (2018).
[30] [30] X. Zhou, C. T. Yang, Q. Xu, Z. Lou, Z. Xu, B. Thierry, N. Gu, "Gold nanoparticle probe-assisted antigen-counting chip using SEM," ACS Appl. Mater. Interfaces 11, 6769–6776 (2019).
[31] [31] L. Feng, L. Wu, F. Xing, L. Hu, J. Ren, X. Qu, "Novel electrochemiluminescence of silver nanoclusters fabricated on triplex DNA scaffolds for label-free detection of biothiols," Biosens. Bioelectron. 98, 378–385 (2017).
[32] [32] J. Wang, J. Huang, K. Quan, J. Li, Y. Wu, Q. Wei, X. Yang, K. Wang, "Hairpin-fuelled catalytic nanobeacons for amplified microRNA imaging in live cells," Chem. Commun. 54, 10336–10339 (2018).
[33] [33] C. Zhang, J. P. Kim, M. Creer, J. Yang, Z. Liu, "A smartphone-based chloridometer for point-of-care diagnostics of cystic fibrosis," Biosens. Bioelectron. 97, 164–168 (2017).
[34] [34] M. E. Kyriazi, D. Giust, A. H. El-Sagheer, P. M. Lackie, O. L. Muskens, T. Brown, A. G. Kanaras, "Multiplexed mRNA Sensing and combinatorialtargeted drug delivery using DNA-gold nanoparticle dimers," ACS Nano 12, 3333–3340 (2018).
[35] [35] P. Vilela, A. Heuer-Jungemann, A. El-Sagheer, T. Brown, O. L. Muskens, N. Smyth, A. G. Kanaras, "Sensing of vimentin mRNA in 2D and 3D models of wounded skin using DNA coated gold nanoparticles," Small 14, e1703489 (2018).
[36] [36] C. H. Choi, L. Hao, S. P. Narayan, E. Auyeung, C. A. Mirkin, "Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates," Proc. Natl. Acad. Sci. U. S. A. 110, 7625–7630 (2013).
[37] [37] D. A. Giljohann, D. S. Seferos, P. C. Patel, J. E. Millstone, N. L. Rosi, C. A. Mirkin, "oligonucleotide loading determines cellular uptake of DNA-Modified gold nanoparticles," Nano Lett. 7, 3818–3821 (2007).
[38] [38] Y. Yang, S. Zhong, K. Wang, J. Huang, "Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems," Analyst 144, 1052–1072 (2019).
[39] [39] U. Heinemann, Y. Roske, "Symmetry in nucleicacid double helices," Symmetry 12(5), 737 (2020).
[40] [40] H. Sato, S. Das, R. H. Singer, M. Vera, "Imaging of DNA and RNA in living eukaryotic cells to reveal spatiotemporal dynamics of gene expression," Annu. Rev. Biochem. 89, 159–187 (2020).
[41] [41] J. K. Kulski, Next-generation sequencing — An overview of the history, tools, and "omic" application, Next Generation Sequencing - Advances, Applications and Challenges, Chap. 1, J. K. Kulski, Ed., pp. 3–60, InTech (2016).
[42] [42] R. A. Hughes, A. D. Ellington, "Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology," Cold Spring Harb. Perspect. Biol. 9(1), a023812 (2017).
[43] [43] O. I. Wilner, I. Willner, "Functionalized DNA nanostructures," Chem. Rev. 112(4), 2528–2556 (2012).
[44] [44] C. Kimna, O. Lieleg, "Molecular micromanagement: DNA nanotechnology establishes spatiotemporal control for precision medicine," Biophys. Rev. 1, 011305 (2020).
[45] [45] F. Xu, Q. Xia, P. Wang, "Rationally designed DNA nanostructures for drug delivery," Front. Chem. 8, 751 (2020).
[46] [46] X. Yan, S. Huang, Y. Wang, Y. Tang, Y. Tian, "Bottom-up self-assembly based on DNA nanotechnology," Nanomaterials 10(10), 2047 (2020).
[47] [47] M. Hawner, C. Ducho, "Cellular targeting of oligonucleotides by conjugation with small molecules," Molecules 25(24), 5963 (2020).
[48] [48] J. Bruno, "A review of therapeutic aptamer conjugates with emphasis on new approaches," Pharmaceuticals 6(3), 340–357 (2013).
[49] [49] N. Rabiee, S. Ahmadi, Z. Arab, M. Bagherzadeh, M. Safarkhani, B. Nasseri, M. Rabiee, M. Tahriri, T. J. Webster, L. Tayebi, "Aptamer hybrid nanocomplexes as targeting components for antibiotic/ gene delivery systems and diagnostics: A review," Int. J. Nanomed. 15, 4237–4256 (2020).
[50] [50] H. Ling, F. Xiaoyi, K. G. Y. Yao, M. Hongmin, K. Guoliang, Z. Xiaobing, "DNAzyme-gold nanoparticle- based probes for biosensing and bioimaging," J. Mater. Chem. B 8, 9449–9465 (2020).
[51] [51] S. Siddiquee, K. Rovina, A. Azriah, "A review of peptide nucleic acid," Adv. Tech. Biol. Med. 3(2), 131 (2015).
[52] [52] S. Ochoa, V. T. Milam, "Modified nucleic acids: expanding the capabilities of functional oligonucleotides," Molecules 25, 4659 (2020).
[53] [53] X. Li, K. Feng, L. Li, L. Yang, X. Pan, H. S. Yazd, C. Cui, J. Li, L. Moroz, Y. Sun, B. Wang, X. Li, T. Huang, W. Tan, "Lipid–oligonucleotide conjugates for bioapplications," Natl. Sci. Rev. 7, 1933–1953 (2020).
[54] [54] N. Dias, C. A. Stein, "Antisense oligonucleotides: Basic concepts and mechanisms," Mol. Cancer Ther. 1, 347–355 (2002).
[55] [55] A. Kilanowska, S. Studzińska, "In vivo and in vitro studies of antisense oligonucleotides – A review," RSC Adv. 10, 34501–34516 (2020).
[56] [56] S. Volpi, U. Cancelli, M. Neri, R. Corradini, "Multifunctional delivery systems for peptide nucleic acids," Pharmaceuticals. 14(1), 14 (2021).
[57] [57] Y. Zhao, C. Xu, "DNA based plasmonic heterogeneous nanostructures: Building, optical responses, and bioapplications," Adv. Mat. 32(41), 1907880 (2020).
[58] [58] L. A. Dykman, N. G. Khlebtsov, "Methods for chemical synthesis of colloidal gold," Russ. Chem. Rev. 88(3), 229–247 (2019).
[59] [59] X.-Y. Liu, C.-B. Zhou, C. Fang, "Nanomaterialinvolved neural stem cell research: Disease treatment, cell labeling, and growth regulation," Biomed. Pharmacother. 107, 583–597 (2018).
[60] [60] Q. Jiang, S. Zhao, J. Liu, L. Song, Z.-G. Wang, B. Ding, "Rationally designed DNA-based nanocarriers," Adv. Drug Deliv. Rev. 147, 2–21 (2019).
[61] [61] V. Raji, K. Pal, T. Zaheer, N. Kalarikkal, S. Thomas, F. G. de Souza, A. Si, "Gold nanoparticles against respiratory diseases: oncogenic and viral pathogens review," Ther. Deliv. 11(8), 521–534 (2020).
[62] [62] N. H. Abd Ellah, S. F. Gad, K. Muhammad, G. E. Batiha, H. F. Hetta, "Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19," Nanomedicine 15, 21 (2020).
[63] [63] L. Yang, H. Sun, X. Wang, W. Yao, W. Zhang, L. Jiang, "An aptamer based aggregation assay for the neonicotinoid insecticide acetamiprid using fluorescent upconversion nanoparticles and DNA functionalized gold nanoparticles," Microchim. Acta 186, 308 (2019).
[64] [64] Z. Hou, Z. Wang, R. Liu, H. Li, Z. Zhang, T. Su, J. Yang, H. Liu, "The effect of phospho-peptide on the stability of gold nanoparticles and drug delivery," J. Nanobiotechnol. 17, 88 (2019).
[65] [65] A. Gupta, D. F. Moyano, A. Parnsubsakul, A. Papadopoulos, L.-S. Wang, R. F. Landis, R. Das, V. M. Rotello, "Ultrastable and biofunctionalizable gold nanoparticles," ACS Appl. Mater. Interfaces 8 (22), 14096–14101 (2016).
[66] [66] X.-Y. Li, F.-Y. Feng, Z.-T. Wu, Y.-Z. Liu, X.-D. Zhou, J.-M. Hu, "High stability of gold nanoparticles towards DNA modification and efficient hybridization via a surfactant-free peptide route," Chem. Commun. 53, 11909–11912 (2017).
[67] [67] S. S. Hinman, K. S. M. Keating, Q. Cheng, "DNA linkers and diluents for ultrastable gold nanoparticle bioconjugates in multiplexed assay development," Anal. Chem. 89, 4272–4279 (2017).
[68] [68] J. Deka, R. Měch, L. Ianeselli, H. Amenitsch, F. Cacho-Nerin, P. Parisse, L. Casalis, "Surface passivation improves the synthesis of highly stable and specific DNA-functionalized gold nanoparticles with variable DNA density," ACS Appl. Mater. Interfaces 7(12), 7033–7040 (2015).
[69] [69] J. H. Heo, K.-I. Kim, H. H. Cho, J. W. Lee, B. S. Lee, S. Y. Yoon, K. J. Park, S. Lee, J. Kim, D. Whang, J. H. Lee, "Ultrastable-stealth large gold nanoparticles with DNA directed biological functionality," Langmuir 31(51), 13773–13782 (2015).
[70] [70] J. Li, B. Zhu, Y. Xiujie, Y. Zhang, Z. Zhu, S. Tu, S. Jia, R. Liu, H. Kang, C. J. Yang, "A synergetic approach for simple and rapid conjugation of gold nanoparticles with oligonucleotides," ACS Appl. Mater. Interfaces 6, 16800–16807 (2014).
[71] [71] J. H. Heo, H. H. Cho, J. H. Lee, "Surfactant-free nanoparticle–DNA complexes with ultrahigh stability against salt for environmental and biological sensing," Analyst 139, 5936–5944 (2014).
[72] [72] J. Gao, X. Huang, H. Liu, F. Zan, J. Ren, "Colloidal Stability of gold nanoparticles modified with thiol compounds: Bioconjugation and application in cancer cell imaging," Langmuir 28(9), 4464–4471 (2012).
[73] [73] S. J. Hurst, A. K. R. Lytton-Jean, C. A. Mirkin, "Maximizing DNA loading on a range of gold nanoparticle sizes," Anal. Chem. 78(24), 8313– 8318 (2006).
[74] [74] X. Liu, G. Liao, L. Zou, Y. Zheng, X. Yang, Q. Wang, X. Geng, S. Li, Y. Liu, K. Wang, "Construction of bio/nanointerfaces: Stable gold nanoparticle bioconjugates in complex systems," ACS Appl. Mater. Interfaces 11(43), 40817–40825 (2019).
[75] [75] J. H. Joo, J.-S. Lee, "Library approach for reliable synthesis and properties of DNA-gold nanorod conjugates," Anal. Chem. 85, 6580–6586 (2013).
[76] [76] A. Wijaya, K. Hamad-Schi?erli, "Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange," Langmuir 24, 9966–9969 (2008).
[77] [77] C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, Y.- C. Wu, "DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation," J. Am. Chem. Soc. 128, 3709– 3715 (2006).
[78] [78] S. Pal, Z. Deng, H. Wang, S. Zou, Y. Liu, H. Yan, "DNA directed self-assembly of anisotropic plasmonic nanostructures," J. Am. Chem. Soc. 133, 17606–17609 (2011).
[79] [79] D. Shi, C. Song, Q. Jiang, Z.-G. Wang, B. Ding, "A facile and efficient method to modify gold nanorods with thiolated DNA at a low pH value," Chem. Commun. 49, 2533–2535 (2013).
[80] [80] U. Das, A. Sahoo, S. Haldar, S. Bhattacharya, S. S. Mandal, W. H. Gmeiner, S. Ghosh, "Secondary structure-dependent physicochemical interaction of oligonucleotides with gold nanorod and photothermal effect for future applications: a new insight," ACS Omega 3(10), 14349–14360 (2018).
[81] [81] I. C. Pekcevik, L. C. H. Poon, M. C. P. Wang, B. D. Gates, "Tunable loading of single-stranded DNA on gold nanorods through the displacement of polyvinylpyrrolidone," Anal. Chem. 85, 9960– 9967 (2013).
[82] [82] J. D. Carter, T. H. LaBean, "Organization of inorganic nanomaterials via programmable DNA self-assembly and peptide molecular recognition," ACS Nano 5, 2200–2205 (2011).
[83] [83] A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, P. G. Schultz, "Organization of `nanocrystal molecules' using DNA," Nature 382, 609–611 (1996).
[84] [84] E. Auyeung, T. I. N. G. Li, A. J. Senesi, A. L. Schmucker, B. C. Pals, M. O. de la Cruz, C. A. Mirkin, "DNA-mediated nanoparticle crystallization into Wulff polyhedral," Nature 505, 73–77 (2014).
[85] [85] F. Lu, K. G. Yager, Y. Zhang, H. Xin, O. Gang, "Superlattices assembled through shape-induced directional binding," Nat. Commun. 6, 6912 (2015).
[86] [86] J. E. Millstone, D. G. Georganopoulou, X. Xu, W. Wei, S. Li, C. A. Mirkin, "DNA-gold triangular nanoprism conjugates," Small 4(12), 2176–2180 (2008).
[87] [87] J.-Y. Kim, J.-S. Lee, "Synthesis and thermodynamically controlled anisotropic assembly of DNA-Silver Nanoprism conjugates for diagnostic applications," Chem. Mater. 22(24), 6684–6691 (2010).
[88] [88] H.-G. Park, J. H. Joo, H.-G. Kim, J.-S. Lee, "Shape-dependent reversible assembly properties of polyvalent DNA-silver nanocube conjugates," J. Phys. Chem. 116(3), 2278–2284 (2011).
[89] [89] M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, C. A. Mirkin, "DNAnanoparticle superlattices formed from anisotropic building blocks," Nat. Mater. 9, 913–917 (2010).
[90] [90] E. Dujardin, L.-B. Hsin, C. R. C. Wangb, S. Mann, "DNA-driven self-assembly of gold nanorods," Chem. Commun. 14, 1264–1265 (2001).
[91] [91] E. Yasun, B. Gulbakan, I. Ocsoy, Q. Yuan, M. I. Shukoor, C. Li, W. Tan, "Enrichment and detection of rare proteins with aptamer-conjugated gold nanorods," Anal. Chem. 84(14), 6008–6015 (2012).
[92] [92] C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, Y.- C. Wu, "DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation," J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[93] [93] S. Pal, Z. Deng, H. Wang, S. Zou, Y. Liu, H. Yan, "DNA directed self-assembly of anisotropic plasmonic nanostructures," J. Am. Chem. Soc. 133(44), 17606–17609 (2011).
[94] [94] D. Shi, C. Song, Q. Jiang, Z.-G. Wanga, B. Ding, "A facile and efficient method to modify gold nanorods with thiolated DNA at a low pH value," Chem. Commun. 49, 2533–2535 (2013).
[95] [95] S. Mann, "Life as a nanoscale phenomenon," Angew. Chem. Int. Ed. 47(29), 5306–5320 (2008).
[96] [96] H. Lin, S. Lee, L. Sun, M. Spellings, M. Engel, S. C. Glotzer, "Clathrate colloidal crystals," Science 355(6328), 931–935 (2017).
[97] [97] M. Loretan, I. Domljanovic, M. Lakatos, C. Rüegg, G. P. Acuna, "DNA origami as emerging technology for the engineering of fluorescent and plasmonic- based biosensors," Materials 13(9), 2185 (2020).
[98] [98] F. F. Lu, T. Vo, Y. Zhang, A. Frenkel, K. G. Yager, S. Kumar, O. Gang, "Unusual packing of soft-shelled nanocubes," Sci. Adv. 5(5), 2399 (2019).
[99] [99] S. Li, L. Xu, W. Ma, X. Wu, M. Sun, H. Kuang, L. Wang, N. A. Kotov, C. Xu, "Dual-mode ultrasensitive quantification of microRNA in living cells by chiroplasmonic nanopyramids self-assembled from gold and upconversion nanoparticles," J. Am. Chem. Soc. 138, 306 (2016).
[100] [100] L. Xu, H. Kuang, C. Xu, W. Ma, L. Wang, N. A. Kotov, "Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells," J. Am. Chem. Soc. 134, 1699 (2012).
[101] [101] Y. Wang, B. Yan, L. Chen, "SERS Tags: Novel optical nanoprobes for bioanalysis," Chem. Rev. 113(3), 1391–1428 (2013).
[102] [102] J. R. Lakowicz, Introduction to fluorescence, Principles of Fluorescence Spectroscopy, Chap. 1, J. R. Lakowicz, Ed., pp. 1–26, Springer, US, New York (2006).
[103] [103] J.-M. Nam, J.-W. Oh, H. Lee, Y. D. Suh, "Plasmonic nanogap-enhanced Raman scattering with nanoparticles," Acc. Chem. Res. 49(12), 2746–2755 (2016).
[104] [104] N. G. Khlebtsov, L. Lin, B. N. Khlebtsov, J. Ye, "Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications," Theranostics 10(5), 2067–2094 (2020).
[105] [105] D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Shu, J.-M. Nam, "Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap," Nat Nano 6, 452–460 (2011).
[106] [106] W. Kang, P. T. C. So, R. R. Dasari, D.-K. Lim, "High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap," Nano Lett. 15, 1766–1772 (2015).
[107] [107] J.-W. Oh, D.-K. Lim, G.-H. Kim, Y. D. Suh, J. Nam, "Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap," J. Am. Chem. Soc. 136, 14052–14059 (2014).
[108] [108] Y. Zhang, P. Yang, M. A. H. Muhammed, S. K. Alsaiari, B. Moosa, A. Almalik, A. Kumar, E. Ringe, N. M. Khashab, "Tunable and linker free nanogaps in core–shell plasmonic nanorods for selective and quantitative detection of circulating tumor cells by SERS," ACS Appl. Mater. Interfaces 9(43), 37597–37605 (2017).
[109] [109] E. Yang, D. Li, P. Yin, Q. Xie, Y. Li, Q. Lin, Y. Duan, "A novel surface-enhanced Raman scattering (SERS) strategy for ultrasensitive detection of bacteria based on three-dimensional (3D) DNA walker," Biosens. Bioelectron. 172, 112758 (2021).
[110] [110] J.-H. Lee, M. H. You, G.-H. Kim, J.-M. Nam, "Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface- enhanced Raman scattering probes," Nano Lett. 14(11), 6217–6225 (2014).
[111] [111] J.-W. Chen, X.-P. Liu, K.-J. Feng, Y. Liang, J.-H. Jiang, G.-L. Shen, R.-Q. Yu, "Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer," Biosens. Bioelectron. 24(1), 66–71 (2008).
[112] [112] J. Prinz, B. Schreiber, L. Olejko, J. Oertel, J. Rackwitz, A. Keller, I. Bald, "DNA origami substrates for highly sensitive surface-enhanced Raman scattering," J. Phys. Chem. Lett. 4(23), 4140–4145 (2013).
[113] [113] L. Z. Chen, J. Chao, X. M. Qu, H. B. Zhang, D. Zhu, S. Su, A. Aldalbahi, L. H. Wang, H. Pei, "Probing cellular molecules with polyA-based engineered aptamer nanobeacon," ACS Appl. Mater. Interfaces 9, 8014–8020 (2017).
[114] [114] D. S. Seferos, D. A. Giljohann, H. D. Hill, A. E. Prigodich, C. A. Mirkin, "Nano-flares: probes for transfection and mRNA detection in living cells," J. Am. Chem. Soc. 129(50), 15477–15479 (2007).
[115] [115] P. W. Wu, K. V. Hwang, T. Lan, Y. Lu, "A DNAzyme-Gold nanoparticle probe for uranyl ion in living cells," J. Am. Chem. Soc. 135, 5254–5257 (2013).
[116] [116] H.-Y. Yeh, M. V. Yates, A. Mulchandani, W. Chen, "Molecular beacon–quantum dot–Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells," Chem. Commun. 46, 3914–3916 (2010).
[117] [117] W. Liu, H. Wei, Z. Lin, S. Mao, J.-M. Lin, "Rare cell chemiluminescence detection based on aptamer- specific capture in microfluidic channels," Biosens. Bioelectron. 28(1), 438–442 (2011).
[118] [118] C. Hu, J. Shen, J. Yan, J. Zhong, W. Qin, R. Liu, A. Aldalbahi, X. Zuo, S. Song, C. Fanc, D. He, "Highly narrow nanogap-containing Au@Au coreshell SERS nanoparticles: Size-dependent Raman enhancement and applications in cancer cell imaging," Nanocale 8, 2090–2096 (2016).
[119] [119] J. W. Kang, P. T. C. So, R. R. Dasari, D.-K. Lim, "High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap," Nano Lett. 15(3), 1766–1772 (2015).
[120] [120] S. Pal1, A. Ray, C. Andreou, Y. Zhou, T. Rakshit, M. Wlodarczyk, M. Maeda, R. Toledo-Crow, N. Berisha, J. Yang, H.-T. Hsu, A. Oseledchyk, J. Mondal, S. Zou, M. F. Kircher, "DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and therapy," Nat. Commun. 10, 1926 (2019).
[121] [121] A. Aderem, D. M. Underhill, "Mechanisms of phagocytosis in macrophages," Annu. Rev. Immunol. 17, 593–623 (1999).
[122] [122] S. L. Schmid, "Clathrin-coated vesicle formation and protein sorting: An integrated process," Annu. Rev. Biochem. 66, 511–548 (1997).
[123] [123] S. D. Conner, S. L. Schmid, "Regulated portals of entry into the cell," Nature 422, 37–44 (2003).
[124] [124] J. A. Swanson, C. Watts, "Macropinocytosis," Trends Cell Biol. 5, 424–428 (1995).
[125] [125] J. Yao, Y. Fan, Y. Li, L. Huang, "Strategies on the nuclear-targeted delivery of genes," J. Drug Target. 21, 926–939 (2013).
[126] [126] A. B. Hill, M. Chen, C.-K. Chen, B. A. Pfeifer, C. H. Jones, "Overcoming gene-delivery hurdles: Physiological considerations for nonviral vectors," Trends Biotechnol. 34, 91–105 (2016).
[127] [127] W.-F. Lai, W.-T. Wong, "Design of polymeric gene carriers for effective intracellular delivery," Trends Biotechnol. 36, 713–728 (2018).
[128] [128] M. P. Stewart, R. Langer, K. F. Jensen, "Intracellular delivery by membrane disruption: Mechanisms, strategies, and concepts," Chem. Rev. 118(16), 7409–7531 (2018).
[129] [129] C. Roma-Rodrigues, L. Rivas-García, P. V. Baptista, A. R. Fernandes, "Gene therapy in cancer treatment: Why go nano?" Pharmaceutic. 12(3), 233 (2020).
[130] [130] R. Huschka, A. Barhoumi, Q. Liu, J. A. Roth, L. Ji, N. J. Halas, "Gene silencing by gold nanoshellmediated delivery and laser-triggered release of antisense oligonucleotide and siRNA," ACS Nano 6, 7681–7691 (2012).
[131] [131] L. A. Dykman, N. G. Khlebtsov, "Multifunctional gold-based nanocomposites for theranostics," Biomaterials 108, 13–34 (2016).
[132] [132] S. Wang, Y. Chen, S. Wang, P. Li, C. A. Mirkin, O. K. Farha, "DNA-functionalized metal–organic framework nanoparticles for intracellular delivery of proteins," J. Am. Chem. Soc. 141(6), 2215–2219 (2019).
[133] [133] I. Lostale-Seijo, J. Montenegro, "Synthetic materials at the forefront of gene delivery," Nat. Chem. 2, 258–277 (2018).
[134] [134] R. Levy, U. Shaheen, Y. Cesbron, V. See, "Gold nanoparticles delivery in mammalian live cells: A critical review," Nano Rev. 1(1), 4889 (2010).
[135] [135] S. Aghamiri, A. A. Ghavidel, F. Zandsalimi, S. Masoumi, N. H. Hafshejani, V. Jajarmi, "Nanoparticles-mediated CRISPR/Cas9 delivery: Applications in cancer treatment and detection," J. Drug. Deliv. Sci. Technol. 56, 101533 (2020).
[136] [136] C. Richter, J. T. Chang, P. C. Fineran, "Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems," Viruses 4(10), 2291–2311 (2012).
[137] [137] H. Mollanoori, S. Teimourian, "Therapeutic applications of CRISPR/Cas9 system in gene therapy," Biotechnol. Lett. 40(6), 907–914 (2018).
[138] [138] Y. Duan, G. Ma, X. Huang, P. A. D'Amore, F. Zhang, H. Lei, "The CRISPR/CAS9-created MDM2 T309G enhances vitreousinduced expression of MDM2 and proliferation and survival of cells," J. Biol. Chem. 291(31), 16339–16347 (2016).
[139] [139] S. Chira, D. Gulei, A. Hajitou, A. A. Zimta, P. Cordelier, I. Berindan-Neagoe, "CRISPR/Cas9: transcending the reality of genome editing," Mol. Ther. Nucl. Acids 7, 211–222 (2017).
[140] [140] J. Ren, Y. Zhao, "Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9," Protein Cell 8, 634–643 (2017).
[141] [141] S. Lin, B. T. Staahl, R. K. Alla, J. A. Doudna, "Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery," Elife 3, e04766 (2014).
[142] [142] G. J. Gibson, M. Yang, "What rheumatologists need to know about CRISPR/Cas9," Nat. Rev. Rheumatol. 13, 205–216 (2017).
[143] [143] P. Wang, L. Zhang, Y. Z. Xie, N. Wang, R. Tang, W. Zheng, X. Jiang, "Genome editing for cancer therapy: Delivery of Cas9 protein/sgRNA plasmid via a gold nanocluster/lipid core–shell nanocarrier," Adv. Sci. 4(11), 1700175 (2017).
[144] [144] R. Mout, M. Ray, G. Y. Tonga, Y.-W. Lee, T. Tay, K. Sasaki, V. M. Rotello, "Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing," ACS Nano 11(3), 2452–2458 (2017).
[145] [145] P. Wang, L. Lin, Z. Guo, J. Chen, H. Tian, X. Chen, H. Yang, "Highly fluorescent gene carrier based on Ag–Au alloy nanoclusters," Macromol. Biosci. 16, 160–167 (2016).
[146] [146] C. Sardoa, B. Bassib, E. F. Craparoa, C. Scialabbaa, E. Cabrinib, G. Dacarrob, A. D'Agostinob, A. Tagliettib, G. Giammonaa, P. Pallavicinib, G. Cavallaroa, "Gold nanostar–polymer hybrids for siRNA delivery: Polymer design towards colloidal stability and in vitro studies on breast cancer cells," Int. J. Pharm. 519, 113–124 (2017).
[147] [147] M. C. Duran, S. Willenbrock, A. Barchanski, J.-M. V. Müller, A. Maiolini, J. T. Soller, S. Barcikowski, I. Nolte, K. Feige, H. M. Escobar, "Comparison of nanoparticle-mediated transfection methods for DNA expression plasmids: Efficiency and cytotoxicity," J. Nanobiotechnol. 9, 47 (2011).
[148] [148] B. Du, X. Gu, X. Han, G. Ding, Y. Wang, D. Li, E. Wang, J. Wang, "Lipid-coated gold nanoparticles functionalized by folic acid as gene vectors for targeted gene delivery in vitro and in vivo," Chem. Med. Chem. 12(21), 1768–1775 (2017).
[149] [149] A. Zhang, S. Pan, Y. Zhang, J. Chang, J. Cheng, Z. Huang, T. Li, C. Zhang, J. Martinez de la Fuentea, Q. Zhang, D. Cui, "Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy," Theranostics 9(12), 3443–3458 (2019).
[150] [150] K. Lee, M. Conboy, H. M. Park, F. Jiang, H. J. Kim, M. A. Dewitt, V. A. Mackley, K. Chang, A. Rao, C. Skinner, T. Shobha, M. Mehdipour, H. Liu, W.-C. Huang, F. Lan, N. L. Bray, S. Li, J. E. Corn, K. Kataoka, J. A. Doudna, I. Conboy, N. Murthy, "Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homologydirected DNA repair," Nat. Biomed. Eng. 1, 889– 901 (2017).
[151] [151] H. Chen, Y. Fan, X. Hao, C. Yang, Y. Peng, R. Guo, X. Shi, X. Cao, "Adoptive cellular immunotherapy of tumors via effective CpG delivery to dendritic cells using dendrimer-entrapped gold nanoparticles as a gene vector," J. Mater. Chem. B 8, 5052–5063 (2020).
[152] [152] E. Shaabani, M. Sharifiaghdam, H. De Keersmaecker, R. De Rycke, S. De Smedt, R. Faridi- Majidi, K. Braeckmans, J. C. Fraire, "Layer by layer assembled chitosan-coated gold nanoparticles for enhanced siRNA delivery and silencing," Int. J. Mol. Sci. 22(2), 831 (2021).
[153] [153] R. Xiong, S. K. Samal, J. Demeester, A. G. Skirtach, S. C. De Smedt, K. Braeckmans, "Laserassisted photoporation: Fundamentals, technological advances and applications," Adv. Phys.: X 1, 596–620 (2016).
[154] [154] L. Wayteck, R. Xiong, K. Braeckmans, S. C. De Smedt, K. Raemdonck, "Comparing photoporation and nucleofection for delivery of small interfering RNA to cytotoxic T cells," J. Control. Release. 267, 154–162 (2017).
[155] [155] S. Courvoisier, N. Saklayen, M. Huber, J. Chen, E. D. Diebold, L. Bonacina, J.-P. Wolf, E. Mazur, "Plasmonic tipless pyramid arrays for cell poration," Nano Lett. 2015(7), 4461–4466 (2015).
[156] [156] Z. Lyu, F. Zhou, Q. Liu, H. Xue, Q. Yu, H. Chen, "A universal platform for macromolecular delivery into cells using gold nanoparticle layers via the photoporation effect," Adv. Funct. Mater. 26(32), 5787–5795 (2016).
[157] [157] J. Wu, H. Xue, Z. Lyu, Z. Li, Y. Qu, Y. Xu, L. Wang, Q. Yu, H. Chen, "Intracellular delivery platform for "Recalcitrant" cells: When polymeric carrier marries photoporation," ACS Appl. Mater. Interfaces 9(26), 21593–21598 (2017).
[158] [158] D. Lapotko, "Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications," Nanomedicine 4, 813–845 (2009).
[159] [159] E. Y. Lukianova-Hleb, A. Belyanin, S. Kashinath, X. Wu, D. O. Lapotko, "Plasmonic nanobubbleenhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells," Biomaterials 33, 1821–1826 (2012).
[160] [160] E. Y. Lukianova-Hleb, M. B. Mutonga, D. O. Lapotko, "Cell-specific multifunctional processing of heterogeneous cell systems in a single laser pulse treatment," ACS Nano 6, 10973–10981 (2012).
[161] [161] R. Xiong, F. Joris, S. Liang, R. De Rycke, S. Lippens, J. Demeester, A. Skirtach, K. Raemdonck, U. Himmelreich, S. C. De Smedt, "Cytosolic delivery of nanolabels prevents their asymmetric inheritance and enables extended quantitative in vivo cell imaging," Nano Lett. 16, 5975–5986 (2016).
[162] [162] R. Xiong, P. Verstraelen, J. Demeester, A. G. Skirtach, J.-P. Timmermans, S. C. De Smedt, W. H. De Vos, K. Braeckmans, "Selective labeling of individual neurons in dense cultured networks with nanoparticle-enhanced photoporation," Front. Cell Neurosci. 12, 80 (2018).
[163] [163] P. Chakravarty, C. D. Lane, T. M. Orlando, M. R. Prausnitz, "Parameters affecting intracellular delivery of molecules using laser-activated carbon nanoparticles," Nanomedicine 12(4), 1003–1011 (2016).
[164] [164] G. Bisker, D. Yelin, "Noble-metal nanoparticles and short pulses for nanomanipulations: theoretical analysis," J. Opt. Soc. Am. B 29, 1383–1393 (2012).
[165] [165] Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, W. Jahnen- Dechent, "Size-dependent cytotoxicity of gold nanoparticles," Small 3, 1941–1949 (2007).
[166] [166] N. M. Schaeublin, L. K. Braydich-Stolle, A. M. Schrand, J. M. Miller, J. Hutchison, J. J. Schlager, S. M. Hussain, "Surface charge of gold nanoparticles mediates mechanism of toxicity," Nanoscale 3, 410–420 (2011).
[167] [167] R. Lachaine, é. Boulais, M. Meunier, "From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles," ACS Photonics 1 (4), 331–336 (2014).
[168] [168] E. Boulais, R. Lachaine, M. Meunier, "Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation," Nano Lett. 12, 4763–4769 (2012).
[169] [169] J. Liu, R. Xiong, T. Brans, S. Lippens, E. Parthoens, F. C. Zanacchi, R. Magrassi, S. K. Singh, S. Kurungot, S. Szunerits, "Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy," Light: Sci. Appl. 7, 47– 57 (2018).
[170] [170] T. Pylaev, E. Vanzha, E. Avdeeva, B. Khlebtsov, N. Khlebtsov, "A novel cell transfection platform based on laser optoporation mediated by Au nanostar layers," J. Biophotonics 12(1), e201800166 (2019).
[171] [171] M. Gai, M. A. Kurochkin, D. Li, B. N. Khlebtsov, L. Dong, N. Tarakina, R. Poston, D. J. Gould, J. Frueh, G. B. Sukhorukov, "In-situ NIR-laser mediated bioactive substance delivery to single cell for EGFP expression based on biocompatible microchamber- arrays," J. Control. Release 276, 84–92 (2018).
[172] [172] N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, E. Mazur, "Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates," ACS Nano 11, 3671–3680 (2017).
[173] [173] M. Schomaker, D. Heinemann, S. Kalies, S. Willenbrock, S. Wagner, I. Nolte, T. Ripken, H. M. Escobar, H. Meyer, A. Heisterkamp, "Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine," J. Biophotonics 13, 10 (2015).
[174] [174] A. M. Wilson, J. Mazzaferri, E. Bergeron, S. Patskovsky, P. Marcoux-Valiquette, S. Costantino, P. (Mike) Sapieha, M. Meunier, "In vivo lasermediated retinal ganglion cell optoporation using KV1.1 conjugated gold nanoparticles," Nano Lett. 18(11), 6981–6988 (2018).
[175] [175] S. Batabyal, S. Gajjeraman, K. Tchedre, A. Dibas, W. Wright, S. Mohanty, "Near-Infrared Laser- Based Spatially Targeted Nano-enhanced Optical Delivery of Therapeutic Genes to Degenerated Retina," Mol. Ther.- Methods Clin. Dev. 17, 758– 770 (2020).
[176] [176] E. Lestrell, F. Patolsky, N. H. Voelcker, R. Elnathan, "Engineered nano-bio interfaces for intracellular delivery and sampling: Applications, agency and artefacts," Mater. Today 33, 87–104 (2019).
[177] [177] Y.-C. Wu, T.-H. Wu, D. L. Clemens, B.-Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, P.-Y. Chiou, "Massively parallel delivery of large cargo into mammalian cells with light pulses," Nat. Methods 12, 439–444 (2015).
[178] [178] M. Madrid, N. Saklayen, W. Shen, M. Huber, N. Vogel, E. Mazur, "Laser-activated self-assembled thermoplasmonic nanocavity substrates for intracellular delivery," ACS Appl. Bio Mater. 1(6), 1793–1799 (2018).
[179] [179] L. Wang, J. Wu, Y. Hu, C. Hu, Y. Pan, Q. Yu, H. Chen, "Using porous magnetic iron oxide nanomaterials as a facile photoporation nanoplatform for macromolecular delivery," J. Mater. Chem. 6, 4427–4436 (2018).
[180] [180] G. C. Messina, M. Dipalo, R. La Rocca, P. Zilio, V. Caprettini, R. P. Zaccaria, A. Toma, F. Tantussi, L. Berdondini, F. De Angelis, "Spatially, temporally, and quantitatively controlled delivery of broad range of molecules into selected cells through plasmonic nanotubes," Adv. Mater. 27(44), 7145– 7149 (2015).
[181] [181] Kurata, M. Tsukakoshi, T. Kasuya, Y. Ikawa, "The laser method for efficient introduction of foreign DNA into cultured cells," Exp. Cell Res. 162(2), 372–378 (1986).
[182] [182] Tirlapur, K. K€onig, "Targeted transfection by femtosecond laser," Nature 418, 290–291 (2002).
[183] [183] I. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, M. R. Koller, "Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types," J. Biomed. Opt. 11(1), 014034 (2006).
[184] [184] M. Leia, H. Xu, H. Yang, B. Yao, "Femtosecond laser-assisted microinjection into living neurons," J. Neurosci. Methods 174(2), 215–218 (2008).
[185] [185] H. A. Rendall, R. F. Marchington, B. B. Praveen, G. Bergmann, Y. Arita, A. Heisterkamp, F. J. Gunn-Moore, K. Dholakia, "High-throughput optical injection of mammalian cells using a Bessel light beam," Lab Chip 12, 4816–4820 (2012).
[186] [186] J. Liu, R. Xiong, T. Brans, S. Lippens, E. Parthoens, F. C. Zanacchi, R. Magrassi, S. K. Singh, S. Kurungot, S. Szunerits, "Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy," Light: Sci. Appl. 7, 47–57 (2018).
[187] [187] Z. Lyu, F. Zhou, Q. Liu, H. Xue, Q. Yu, H. A. Chen, "Universal platform for macromolecular deliveryinto cells using gold nanoparticle layers via the photoporation effect," Adv. Funct. Mater. 26(32), 5787–5795 (2016).
[188] [188] N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, E. Mazur, "Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates," ACS Nano 11, 3671–3680 (2017).
[189] [189] N. R. Y. Ho, G. S. Lim, N. R. Sundah, D. Lim, T. P. Loh, H. Shao, "Visual and modular detection of pathogen nucleic acids with enzyme-DNA molecular complexes," Nat. Commun. 9, 3238 (2018).
[190] [190] H. Y. Lau, J. R. Botella, "Advanced DNA-based point-of-care diagnostic methods for plant diseases detection," Front. Plant Sci. 8, 2016 (2017).
[191] [191] M. Y. C. Wu, M. Y. Hsu, S. J. Chen, D. K. Hwang, T. H. Yen, C. M. Cheng, "Point-of-care detection devices for food safety monitoring: Proactive disease prevention," Trends Biotechnol. 35, 288–300 (2017).
[192] [192] P. K. Drain, E. P. Hyle, F. Noubary, K. A. Freedberg, D. Wilson, W. R. Bishai, W. Rodriguez, I. V. Bassett, "Diagnostic point-of-care tests in resource-limited settings," Lancet Infect. Dis. 14, 239–249 (2014).
[193] [193] H. Xu, M. Gao, X. Tang, W. Zhang, D. Luo, M. Chen, "Micro/nano technology for next-generation diagnostics," Small Methods 4, 4 (2019).
[194] [194] M. Z. Yang, Y. Liu, X. Y. Jiang, "Barcoded point-ofcare bioassays," Chem. Soc. Rev. 48, 850–884 (2019).
[195] [195] J. S. Gootenberg, O. O. Abudayyeh, M. J. Kellner, J. Joung, J. J. Collins, F. Zhang, "Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6," Science 360, 439–444 (2018).
[196] [196] C. E. Jin, B. Koo, E. Y. Lee, J. Y. Kim, S. H. Kim, Y. Shin, "Simple and label-free pathogen enrichment via homobifunctional imidoesters using a microfluidic (SLIM) system for ultrasensitive pathogen detection in various clinical specimens," Biosens. Bioelectron. 111, 66–73 (2018).
[197] [197] U. Singh, V. Morya, A. Rajwar, A. Richard, C. B. Datta, C. Ghoroi, D. Bhatia, "DNA-functionalized nanoparticles for targeted biosensing and biological applications," ACS Omega 5(48), 30767–30774 (2020).
[198] [198] M. Cordeiro, F. F. Carlos, P. Pedrosa, A. Lopez, P. V. Baptista, "Gold nanoparticles for diagnostics: advances towards points of care," Diagnostics 6, 43 (2016).
[199] [199] S. Hwu, M. Garzuel, C. Forró, S. J. Ihle, A. M. Reichmuth, F. Kurdzesau, J. V€or€os, "An analytical method to control the surface density and stability of DNA-gold nanoparticles for an optimized biosensor," Colloids Surf. B: Biointerfaces 187, 110650 (2020).
[200] [200] Z. Yuan, J. Cheng, X. Cheng, Y. He, E. S. Yeung, "Highly sensitive DNA hybridization detection with single nanoparticle flash-lamp darkfield microscopy," Analyst. 137, 2930 (2012).
[201] [201] K. Sato, K. Hosokawa, M. Maeda, "Non-crosslinking gold nanoparticle aggregation as a detection method for single-base substitutions," Nucl. Acids Res. 33(1), e4 (2005).
[202] [202] H. Li, L. J. Rothberg, "Label-free colorimetric detection of specific sequences in genomic DNA ampli fied by the polymerase chain reaction," J. Am. Chem. Soc. 126, 10958–10961 (2004).
[203] [203] T. E. Pylaev, V. A. Khanadeev, B. N. Khlebtsov, L. A. Dykman, V. A. Bogatyrev, N. G. Khlebtsov, "Colorimetric and dynamic light scattering detection of DNA sequences by using positively charged gold nanospheres: a comparative study with gold nanorods," Nanotechnology 22, 285501 (2011).
[204] [204] H. Xu, A. Xia, D. Wang, Y. Zhang, S. Deng, W. Lu, J. Luo, Q. Zhong, F. Zhang, L. Zhou, W. Zhang, Y. Wang, C. Yang, K. Chang, W. Fu, J. Cui, M. Gan, D. Luo, M. Chen, "An ultraportable and versatile point-of-care DNA testing platform," Sci. Adv. 6(17), eaaz7445 (2020).
[205] [205] Z. He, H. Yang, "Colourimetric detection of swinespeci fic DNA for halal authentication using gold nanoparticles," Food Control. 88, 9–14 (2018).
[206] [206] H. Kuang, W. Chen, D. Xu, L. Xu, Y. Zhu, L. Liu, H. Chu, C. Peng, C. Xu, S. Zhu, "Fabricated aptamer-based electrochemical "signal-off" sensor of Ochratoxin A," Biosens. Bioelectron. 26, 710– 716 (2010).
[207] [207] G. Dharanivasan, D. M. I. Jesse, T. Rajamuthuramalingam, G. Rajendran, S. Shanthi, K. Kathiravan, "Scanometric detection of tomato leaf curl New Delhi viral DNA using mono- and bifunctional AuNP-conjugated oligonucleotide probes," ACS Omega 4, 10094–10107 (2019).
[208] [208] J. Cheng, L. J. Kricka, Biochip Technology, Harwood Academic Publishers, Singapore (2001).
[209] [209] P. Keblinski, S. R. Phillpot, S. U. S. Choi, J. A. Eastmen, "Mechanism of heat flow in suspension of nano-sized particles (nanofluids)," Int. J. Heat Mass Transfer 45, 855–863 (2002).
[210] [210] M. Hu, G. V. Hartland, "Heat dissipation for Au particles in aqueous solution: relaxation time versus size," J. Phys. Chem. B 106, 7029–7033 (2002).
[211] [211] S. Link, C. Burda, Z. L. Wang, M. A. El-Sayed, "Electron dynamics in gold and gold-silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation," J. Chem. Phys. 111, 1255–1264 (1999).
[212] [212] M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192 (1997).
[213] [213] J. Z. Zhang, "Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: effects of size and surface," Acc. Chem. Res. 30, 423–429 (1997).
[214] [214] H. Li, J. Huang, J. Lv, H. An, X. Zhang, Z. Zhang, C. Fan, J. Hu, "Nanoparticle PCR: Nanogoldassisted PCR with enhanced specificity," Angew. Chem. Int. Ed. 44, 5100–5103 (2005).
[215] [215] M. Li, Y. C. Lin, C. C. Wu, H. S. Liu, "Enhancing the efficiency of a PCR using gold nanoparticles," Nucl. Acids Res 33, e184 (2005).
[216] [216] J. Pan, H. Li, X. Cao, J. Huang, X. Zhang, C. Fan, J. Hu, "Nanogold-assisted multi-round polymerase chain reaction (PCR)," J. Nanosci. Nanotechnol. 7, 4428–4433 (2007).
[217] [217] L. J. Mi, H. P. Zhu, X. D. Zhang, J. Hu, C. H. Fan, "Mechanism of the interaction between Au nanoparticles and polymerase in nanoparticle PCR," Chin. Sci. Bull. 52, 2345–2349 (2007).
[218] [218] D. X. Cui, F. R. Tian, Y. Kong, I. Titushikin, H. J. Gao, "Effects of single-walled carbon nanotubes on the polymerase chain reaction," Nanotechnology 15, 154–157 (2004).
[219] [219] Z. Z. Zhang, M. C. Wang, H. J. An, "An aqueous suspension of carbon nanopowder enhances the efficiency of a polymerase chain reaction," Nanotechnology 18, 355706 (2007).
[220] [220] L. Nie, L. Z. Gao, X. Y. Yan, T. H. Wang, "Functionalized tetrapod-like ZnO nanostructures for plasmid DNA purification, polymerase chain reaction and delivery," Nanotechnology 18, 015101 (2007).
[221] [221] L. Yuan, Y. He, "Effect of surface charge of PDDAprotected gold nanoparticles on the specificity and efficiency of DNA polymerase chain reaction," Analyst 138, 539–545 (2013).
[222] [222] L. Cavigli, B. N. Khlebtsov, S. Centi, N. G. Khlebtsov, R. Pini, F. Ratto, "Photostability of contrast agents for photoacoustics: The case of gold nanorods," Nanomaterials 11, 116 (2021).
[223] [223] E. Vanzha, T. Pylaev, V. Khanadeev, S. Konnova, V. Fedorova, N. Khlebtsov, "Gold nanoparticleassisted polymerase chain reaction: effects of surface ligands, nanoparticle shape and material," RSC Adv. 6, 110146 (2016).
[224] [224] R. H. Don, P. T. Cox, B. J. Wainwright, K. Baker, J. S. Mattick, "'Touchdown' PCR to circumvent spurious priming during gene amplification," Nucl. Acids Res. 19, 4008 (1991).
[225] [225] Y.-C. Lin, H.-L. Wu, "Nano-PCR: Breaking the bottom limit of the PCR denaturation temperature using nanogold," TRANSDUCERS and EUROSENSORS `07 – Int. Solid-State Sensors, Actuators and Microsystems Conf., pp. 391–394, IEEE, Lyon (2007).
[226] [226] B. V. Vu, D. Litvinov, R. C. Willson, "Gold nanoparticle effects in polymerase chain reaction: favoring of smaller products by polymerase adsorption," Anal. Chem. 80, 5462–5467 (2008).
[227] [227] W. Wan, J. T. W. Yeow, M. I. Van Dyke, "Sizedependent PCR inhibitory effect induced by gold nanoparticles," Proc. 31st Annual Int. Conf. IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, pp. 2771– 2774, IEEE, Minneapolis (2009).
[228] [228] A. L. Haber, K. R. Griffiths, ?. K. Jamting, K. R. Emslie, "Addition of gold nanoparticles to realtime PCR: Effect on PCR profile and SYBR Green I fluorescence," Anal. Bioanal. Chem. 392, 887– 896 (2008).
[229] [229] S.-H. Huang, T.-C. Yang, M.-H. Tsai, I.-S. Tsai, H.-C. Lu, P.-H. Chuang, L. Wan, Y.-J. Lin, C.-H. Lai, C.-W. Lin, "Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus," Nanotechnology 19, 405101 (2008).
[230] [230] K. H. Cheong, D. K. Yi, J.-G. Lee, J.-M. Park, M. J. Kim, J. B. Edel, C. Ko, "Gold nanoparticles for one step DNA extraction and real-time PCR of pathogens in a single chamber," Lab Chip 8, 810– 813 (2008).
Get Citation
Copy Citation Text
Timofey Pylaev, Elena Avdeeva, Nikolai Khlebtsov. Plasmonic nanoparticles and nucleic acids hybrids for targeted gene delivery, bioimaging, and molecular recognition[J]. Journal of Innovative Optical Health Sciences, 2021, 14(4): 2130003
Received: May. 19, 2021
Accepted: May. 22, 2021
Published Online: Aug. 23, 2021
The Author Email: Pylaev Timofey (pylaev_t@ibppm.ru)