Acta Photonica Sinica, Volume. 53, Issue 5, 0553106(2024)
Quantum Dots for Wavelength-tunable Entangled Photon Sources(Invited)
[1] H J KIMBLE. The quantum internet. Nature, 453, 1023-1030(2008).
[2] S WEHNER, D ELKOUSS, R HANSON. Quantum internet: a vision for the road ahead. Science, 362, eaam9288(2018).
[3] N GISIN, R THEW. Quantum communication. Nature Photonics, 1, 165-171(2007).
[4] J L O'BRIEN, A FURUSAWA, J VUČKOVIĆ. Photonic quantum technologies. Nature Photonics, 3, 1-9(2009).
[5] S PIRANDOLA, B R BARDHAN, T GEHRING et al. Advances in photonic quantum sensing. Nature Photonics, 12, 724-733(2018).
[6] H J BRIEGEL, W DÜR, J I CIRAC et al. Quantum repeaters: the role of imperfect local operations in quantum communication. Physical Review Letters, 81, 5932-5935(1998).
[7] L M DUAN, M D LUKIN, J I CIRAC et al. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414, 413-418(2001).
[8] W J MUNRO, A M STEPHENS, S J DEVITT et al. Quantum communication without the necessity of quantum memories. Nature Photonics, 6, 777-781(2012).
[9] M MÜLLER, S BOUNOUAR, K D JÖNS et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nature Photonics, 8, 224-228(2014).
[10] C Y LU, J W PAN. Push-button photon entanglement. Nature Photonics, 8, 174-176(2014).
[11] A DOUSSE, J SUFFCZYŃSKI, A BEVERATOS et al. Ultrabright source of entangled photon pairs. Nature, 466, 217-220(2010).
[12] H WANG, H HU, T H CHUNG et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Physical Review Letters, 122, 113602(2019).
[13] D HUBER, M REINDL, S F COVRE DA SILVA et al. Strain-tunable gaas quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Physical Review Letters, 121, 033902(2018).
[14] S HEPP, M JETTER, S L PORTALUPI et al. Semiconductor quantum dots for integrated quantum photonics. Advanced Quantum Technologies, 2, 1900020(2019).
[15] A W ELSHAARI, I E ZADEH, A FOGNINI et al. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nature Communications, 8, 379(2017).
[16] N PERRET, D MORRIS, L FRANCHOMME-FOSSÉ et al. Origin of the inhomogenous broadening and alloy intermixing in InAs/GaAs self-assembled quantum dots. Physical Review B, 62, 5092-5099(2000).
[17] A RASTELLI, M STOFFEL, A MALACHIAS et al. Three-dimensional composition profiles of single quantum dots determined by scanning-probe-microscopy-based nanotomography. Nano Letters, 8, 1404-1409(2008).
[18] H G BABIN, N BART, M SCHMIDT et al. Full wafer property control of local droplet etched GaAs quantum dots. Journal of Crystal Growth, 591, 126713(2022).
[19] C K HONG, Z Y OU, L MANDEL. Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters, 59, 2044-2046(1987).
[20] M ZOPF, R KEIL, Y CHEN et al. Entanglement swapping with semiconductor-generated photons violates Bell's inequality. Physical Review Letters, 123, 160502(2019).
[21] A SCHLIWA, M WINKELNKEMPER, D BIMBERG. Impact of size, shape, and composition on piezoelectric effects and electronic properties of In (Ga) As/Ga As quantum dots. Physical Review B, 76, 205324(2007).
[22] ANO T , M ABBARCHI, T KURODA et al. Self-assembly of symmetric gaas quantum dots on (111)a substrates: suppression of fine-structure splitting. Applied Physics Express, 3, 065203(2010).
[23] J PLUMHOF, V KŘÁPEK, L WANG et al. Experimental investigation and modeling of the fine structure splitting of neutral excitons in strain-free GaAs/Alx Ga1- x As quantum dots. Physical Review B, 81, 121309(2010).
[24] J W LUO, A ZUNGER. Geometry of epitaxial GaAs/(Al,Ga)As quantum dots as seen by excitonic spectroscopy. Physical Review B, 84, 235317(2011).
[25] M BAYER, G ORTNER, O STERN et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Physical Review B, 65, 195315(2002).
[26] A J HUDSON, R M STEVENSON, A J BENNETT et al. Coherence of an entangled exciton-photon state. Physical Review Letters, 99, 266802(2007).
[27] R M STEVENSON, R J YOUNG, SEE P et al. Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots. Physical Review B, 73, 033306(2006).
[28] R M STEVENSON, R J YOUNG, P ATKINSON et al. A semiconductor source of triggered entangled photon pairs. Nature, 439, 178-182(2006).
[29] J D MAR, X L XU, J S SANDHU et al. Electrical control of fine-structure splitting in self-assembled quantum dots for entangled photon pair creation. Applied Physics Letters, 97, 221108(2010).
[30] M M VOGEL, S M ULRICH, R HAFENBRAK et al. Influence of lateral electric fields on multi-excitonic transitions and fine structure of single quantum dots. Applied Physics Letters, 91, 2005-2008(2007).
[31] K KOWALIK, O KREBS, A LEMAÎTRE et al. Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots. Applied Physics Letters, 86, 041907(2005).
[32] A J BENNETT, M A POOLEY, R M STEVENSON et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nature Physics, 6, 947-950(2010).
[33] M GHALI, K OHTANI, Y OHNO et al. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field. Nature Communications, 3, 661(2012).
[34] A MULLER, W FANG, J LAWALL et al. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect. Physical Review Letters, 103, 217402(2009).
[35] G JUNDT, L ROBLEDO, A HÖGELE et al. Observation of dressed excitonic states in a single quantum dot. Physical Review Letters, 100, 177401(2008).
[36] A J BRASH, L M P P MARTINS, F LIU et al. High-fidelity initialization of long-lived quantum dot hole spin qubits by reduced fine-structure splitting. Physical Review B, 92, 121301(2015).
[37] S SEIDL, M KRONER, A HÖGELE et al. Effect of uniaxial stress on excitons in a self-assembled quantum dot. Applied Physics Letters, 88, 0-3(2006).
[38] R TROTTA, J MARTÍN-SÁNCHEZ, I DARUKA et al. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays. Physical Review Letters, 114, 150502(2015).
[39] B D GERARDOT, D BRUNNER, P A DALGARNO et al. Optical pumping of a single hole spin in a quantum dot. Nature, 451, 441-444(2008).
[40] J Y YAN, C CHEN, X D ZHANG et al. Coherent control of a high-orbital hole in a semiconductor quantum dot. Nature Nanotechnology, 18, 1139-1146(2023).
[41] O BENSON, C SANTORI, M PELTON et al. Regulated and entangled photons from a single quantum dot. Physical Review Letters, 84, 2513-2516(2000).
[42] L E BRUS. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. The Journal of Chemical Physics, 80, 4403-4409(1984).
[43] L E BRUS. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. The Journal of Chemical Physics, 79, 5566-5571(1983).
[44] F P GARCÍA DE ARQUER, D V TALAPIN, V I KLIMOV et al. Semiconductor quantum dots: technological progress and future challenges. Science, 373, eaaz8541(2021).
[45] T LETTNER, S GYGER, K D ZEUNER et al. Strain-controlled quantum dot fine structure for entangled photon generation at 1550 nm. Nano Letters, 21, 10501-10506(2021).
[46] C SCHIMPF, M REINDL, F BASSO BASSET et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks. Applied Physics Letters, 118, 100502(2021).
[47] C L SALTER, R M STEVENSON, I FARRER et al. An entangled-light-emitting diode. Nature, 465, 594-597(2010).
[48] J HUWER, R M STEVENSON, J SKIBA-SZYMANSKA et al. Quantum-dot-based telecommunication-wavelength quantum relay. Physical Review Applied, 8, 024007(2017).
[49] D J P ELLIS, R M STEVENSON, R J YOUNG et al. Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing. Applied Physics Letters, 90, 011907(2007).
[50] R TROTTA, E ZALLO, C ORTIX et al. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. Physical Review Letters, 109, 147401(2012).
[51] J ZHANG, E ZALLO, B HÖFER et al. Electric-field-induced energy tuning of on-demand entangled-photon emission from self-assembled quantum dots. Nano Letters, 17, 501-507(2017).
[52] M A POOLEY, A J BENNETT, R M STEVENSON et al. Energy-tunable quantum dot with minimal fine structure created by using simultaneous electric and magnetic fields. Physical Review Applied, 1, 024002(2014).
[53] Y CHEN, J ZHANG, M ZOPF et al. Wavelength-tunable entangled photons from silicon-integrated Ⅲ-Ⅴ quantum dots. Nature Communications, 7, 10387(2016).
[54] R TROTTA, J MARTÍN-SÁNCHEZ, J S WILDMANN et al. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nature Communications, 7, 10375(2016).
[55] OU W , X WANG, W WEI et al. Strain tuning self-assembled quantum dots for energy-tunable entangled-photon sources using a photolithographically fabricated microelectromechanical system. ACS Photonics, 9, 3421-3428(2022).
[56] C CHEN, J Y YAN, H G BABIN et al. Wavelength-tunable high-fidelity entangled photon sources enabled by dual Stark effects(2023).
[57] E M PURCELL. Spontaneous emission probabilities at radio frequencies. Physical Review, 69, 681(1946).
[58] J M GERARD, B GAYRAL. Strong purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. Journal of Lightwave Technology, 17, 2089(1999).
[59] G S SOLOMON, M PELTON, Y YAMAMOTO. Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity. Physical Review Letters, 86, 3903-3906(2001).
[60] W BARNES, G BJÖRK, J GÉRARD et al. Solid-state single photon sources: light collection strategies. The European Physical Journal D-Atomic, Molecular and Optical Physics, 18, 197-210(2002).
[61] E RAMSAY. Solid immersion lens applications for nanophotonic devices. Journal of Nanophotonics, 2, 021854(2008).
[62] Y CHEN, M ZOPF, R KEIL et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nature Communications, 9, 2994(2018).
[63] O GAZZANO, G S SOLOMON. Toward optical quantum information processing with quantum dots coupled to microstructures [Invited]. Journal of the Optical Society of America B, 33, C160(2016).
[64] X DING, Y P GUO, M C XU et al. High-efficiency single-photon source above the loss-tolerant threshold for efficient linear optical quantum computing(2023).
[65] C SIMON, J P POIZAT. Creating single time-bin-entangled photon pairs. Physical Review Letters, 94, 030502(2005).
[66] T HUBER, A PREDOJEVIĆ, H ZOUBI et al. Measurement and modification of biexciton-exciton time correlations. Optics Express, 21, 9890(2013).
[67] E SCHÖLL, L SCHWEICKERT, L HANSCHKE et al. Crux of using the cascaded emission of a three-level quantum ladder system to generate indistinguishable photons. Physical Review Letters, 125, 233605(2020).
[68] J LIU, R SU, Y WEI et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nature Nanotechnology, 14, 586-593(2019).
[69] J LIU, R SU, Y WEI et al. A solid-state entangled photon pair source with high brightness and indistinguishability(2019).
[70] S SEYFFERLE, T HERZOG, R SITTIG et al. Wavelength-tunable open double-microcavity to enhance two closely spaced optical transitions(2022).
[71] D NAJER, I SÖLLNER, P SEKATSKI et al. A gated quantum dot strongly coupled to an optical microcavity. Nature, 575, 622-627(2019).
[72] F DING, R SINGH, J D PLUMHOF et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. Physical Review Letters, 104, 067405(2010).
[73] R TROTTA, E ZALLO, E MAGERL et al. Independent control of exciton and biexciton energies in single quantum dots via electroelastic fields. Physical Review B, 88, 155312(2013).
[74] M E REIMER, M P VAN KOUWEN, A W HIDMA et al. Electric field induced removal of the biexciton binding energy in a single quantum dot. Nano Letters, 11, 645-650(2011).
[75] F BASSO BASSET, M B ROTA, C SCHIMPF et al. Entanglement swapping with photons generated on demand by a quantum dot. Physical Review Letters, 123, 160501(2019).
[76] S GHOSH, G KAR, SEN A DE et al. Mixedness in the Bell violation versus entanglement of formation. Physical Review A, 64, 044301(2001).
Get Citation
Copy Citation Text
Chen CHEN, Feng LIU. Quantum Dots for Wavelength-tunable Entangled Photon Sources(Invited)[J]. Acta Photonica Sinica, 2024, 53(5): 0553106
Category: Special Issue for Microcavity Photonics
Received: Nov. 27, 2023
Accepted: Jan. 8, 2024
Published Online: Jun. 20, 2024
The Author Email: LIU Feng (feng_liu@zju.edu.cn)