Journal of Innovative Optical Health Sciences, Volume. 3, Issue 4, 221(2010)

DYNAMIC OPTICAL COHERENCE ELASTOGRAPHY: A REVIEW

XING LIANG1...2, VASILICA CRECEA2,3, and STEPHEN A. BOPPART24,* |Show fewer author(s)
Author Affiliations
  • 1Department of Electrical and Computer Engineering
  • 2Biophotonics Imaging Laboratory Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, IL, 61801, USA
  • 3Department of Physics
  • 4Departments of Electrical and Computer Engineering Bioengineering, and Internal Medicine
  • show less
    References(41)

    [1] [1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).

    [2] [2] J. M. Schmitt, “OCT elastography: Imaging microscopic deformation and strain of tissue,” Opt. Express 3, 199–211 (1998).

    [3] [3] S. J. Kirkpatrick, R. K. Wang, D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14, 11,585–11,597 (2006).

    [4] [4] Y. Yang, P. O. Bagnaninchi, M. Ahearne, R. K. Wang, K. K. Liu, “A novel optical coherence tomography-based micro-indentation technique for mechanical characterization of hydrogels,” J. R. Soc. Interface 4, 1169–1173 (2007).

    [5] [5] B. Heise, K. Wiesauer, E. Gotzinger, M. Pircher, C. K. Hitzenberger, R. Engelke, G. Ahrens, G. Grutzner, D. Stifter, “Spatially resolved stress measurements in materials with polarisation-sensitive optical coherence tomography: Image acquisition and processing aspects,” Strain 46, 61–68 (2010).

    [6] [6] S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54, 3129–3139 (2009).

    [7] [7] B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17, 21,762–21,772 (2009).

    [8] [8] R. K. Wang, S. Kirkpatrick, M. Hinds, “Phasesensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105 (2007).

    [9] [9] R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, B. E. Bouma, “OCT-based arterial elastography: Robust estimation exploiting tissue biomechanics,” Opt. Express 12, 4558–4572 (2004).

    [10] [10] J. Rogowska, N. A. Patel, J. G. Fujimoto, M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90, 556– 562 (2004).

    [11] [11] A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, M. R. Kaazempur-Mofrad, “Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33, 1631–1639 (2005).

    [12] [12] J. Rogowska, N. Patel, S. Plummer, M. E. Brezinski, “Quantitative optical coherence tomographic elastography: Method for assessing arterial mechanical properties,” Br. J. Radiol. 79, 707–711 (2006).

    [13] [13] G. van Soest, F. Mastik, N. de Jong, A. F. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52, 2445–2458 (2007).

    [14] [14] R. Karimi, T. Zhu, B. E. Bouma, M. R. Kaazempur- Mofrad, “Estimation of nonlinear mechanical properties of vascular tissues via elastography,” Cardiovasc. Eng. 8, 191–202 (2008).

    [15] [15] H. J. Ko,W. Tan, R. Stack, S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12, 63–73 (2006).

    [16] [16] Q. Wang, Y.-C. Ahn, C. Kim, L. Yu, W. Jia, B. Rao, Z. Chen, H. K. Chiang, “Thermoelastic optical Doppler tomography of biological tissues,” Proc. SPIE 6847, 68471B (2008).

    [17] [17] J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).

    [18] [18] J. F. Greenleaf, M. Fatemi, M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5, 57–78 (2003).

    [19] [19] X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16, 11,052–11,065 (2008).

    [20] [20] X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett. 34, 2894–2896 (2009).

    [21] [21] V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17, 23,114–23,122 (2009).

    [22] [22] L. Wang, Y. M. Wang, S. G. Guo, J. Zhang, M. Bachman, G. P. Li, Z. P. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Optics Communications 242, 345–350 (2004).

    [23] [23] X. Liang, S. A. Boppart, “Dynamic optical coherence elastography and applications,” Proc. SPIE 7634, 763403 (2009).

    [24] [24] D. A. Medalie, S. A. Eming, M. E. Collins, R. G. Tompkins, M. L. Yarmush, J. R. Morgan, “Differences in dermal analogs influence subsequent pigmentation, epidermal differentiation, basement membrane, and rete ridge formation of transplanted composite skin grafts,” Transplantation 64, 454–465 (1997).

    [25] [25] A. Bayon, F. Gascon, F. J. Nieves, “Estimation of dynamic elastic constants from the amplitude and velocity of Rayleigh waves,” J. Acoust. Soc. Am. 117, 3469–3477 (2005).

    [26] [26] R. O. Potts, D. A. Chrisman, Jr., E. M. Buras, Jr., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16, 365–372 (1983).

    [27] [27] B. J. Fahey, R. C. Nelson, D. P. Bradway, S. J. Hsu, D. M. Dumont, G. E. Trahey, “In vivo visualization of abdominal malignancies with acoustic radiation force elastography,” Phys. Med. Biol. 53, 279–293 (2008).

    [28] [28] E. J. Chen, R. S. Adler, P. L. Carson,W. K. Jenkins, W. D. O’Brien, Jr., “Ultrasound tissue displacement imaging with application to breast cancer,” Ultrasound Med. Biol. 21, 1153–1162 (1995).

    [29] [29] K. R. Nightingale,M. L. Palmeri, R.W. Nightingale, G. E. Trahey, “On the feasibility of remote palpation using acoustic radiation force,” J. Acoust. Soc. Am. 110, 625–634 (2001).

    [30] [30] A. L. Oldenburg, J. R. Gunther, S. A. Boppart, “Imaging magnetically labeled cells with magnetomotive optical coherence tomography,” Opt. Lett. 30, 747–749 (2005).

    [31] [31] E. P. Furlani, “Magnetophoretic separation of blood cells at the microscale,” J. Phys. D — Appl. Phys. 40, 1313–1319 (2007).

    [32] [32] A. L. Oldenburg, F. J. J. Toublan, K. S. Suslick, A. Wei, S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13, 6597–6614 (2005).

    [33] [33] A. L. Oldenburg, V. Crecea, S. A. Rinne, S. A. Boppart, “Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues,” Opt. Express 16, 11,525– 11,539 (2008).

    [34] [34] R. John, E. J. Chaney, S. A. Boppart, “Dynamics of magnetic nanoparticle-based contrast agents in tissues tracked using magnetomotive optical coherence tomography,” IEEE J. Select. Topics Quantum Electronics 16, 691–697 (2010).

    [35] [35] A. L. Oldenburg, S. A. Boppart, “Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography,” Phys. Med. Biol. 55, 1189–1201 (2010).

    [36] [36] J. H. Lee, Y. M. Huh, Y. W. Jun, J. W. Seo, J. T. Jang, H. T. Song, S. Kim, E. J. Cho, H. G. Yoon, J. S. Suh, J. Cheon, “Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging,” Nat. Med. 13, 95–99 (2007).

    [37] [37] R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. USA 107, 8085– 8090 (2010).

    [38] [38] S. J. DeNardo, G. L. DeNardo, L. A. Miers, A. Natarajan, A. R. Foreman, C. Gruettner, G. N. Adamson, R. Ivkov, “Development of tumor targeting bioprobes ((111)In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy,” Clin. Cancer Res. 11, 7087s–7092s (2005).

    [39] [39] R. Koole, W. J. Mulder, M. M. van Schooneveld, G. J. Strijkers, A. Meijerink, K. Nicolay, “Magnetic quantum dots for multimodal imaging,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 475– 491 (2009).

    [40] [40] X. Liang, S. G. Adie, R. John, S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express 18, 14,183–14,190 (2010).

    [41] [41] X. Liang, S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57, 953–959 (2009).

    Tools

    Get Citation

    Copy Citation Text

    XING LIANG, VASILICA CRECEA, STEPHEN A. BOPPART. DYNAMIC OPTICAL COHERENCE ELASTOGRAPHY: A REVIEW[J]. Journal of Innovative Optical Health Sciences, 2010, 3(4): 221

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: --

    Accepted: --

    Published Online: Jan. 10, 2019

    The Author Email: BOPPART STEPHEN A. (boppart@illinois.edu)

    DOI:10.1142/s1793545810001180

    Topics