Electro-Optic Technology Application, Volume. 36, Issue 5, 42(2021)

Progress in High-precision Distance Measurement Based on Optical Frequency Combs (Invited)

QIN Peng and WANG Si-jia
Author Affiliations
  • [in Chinese]
  • show less
    References(51)

    [1] [1] Sabol C, Burns R, McLaughlin C A. Satellite formation fly. ing design and evolution[J]. Journal of Spacecraft & Reck. ects, 2001, 38(2): 270-278.

    [2] [2] Huang CY, White I, Thwaite E G, et al. A noncontact laser system for measuring soil surface topography[J]. Soic Sci. ence Society of America Journal 1988, 52(2): 350-355.

    [3] [3] Kosarevsky S. Practical way to measure large-scale 2D parts using repositioning on coordinate-measuring ma. chines[J]. Measurement, 2010, 43(6): 837-841.

    [4] [4] Harry G M. Advanced LIGO: the next generation of gravi.tational wave detectors[J]. Classical and Quantum Gravity, 2010, 27(8): 084006.

    [5] [5] Luo J, Chen L S, Duan H Z, et al. Tianqin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010.

    [6] [6] HuWR, Wu Y L. The Taiji program in space for gravita. tional wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685-686.

    [7] [7] Reigber C, Lühr H, Schwintzer P. CHAMP mission sta. tus[J]. Advances in Space Research, 2002, 30(2): 129-134.

    [8] [8] Tapley B D, Bettadpur S, Watkins M, et al. The gravity re.covery and climate experiment: mission overview and ear.ly results[J]. Geophysical Research Letters, 2004, 31(9).

    [9] [9] Abich K, Abramovici A, Amparan B, et al. In-orbit perfor. mance of the GRACE follow-on laser ranging interferome. ter[J]. Physical Review Letters, 2019, 123(3): 031101.

    [10] [10] Shen J, She S, Wang K, et al. Study on inter-satellite high accuracy ranging technology for gravity satellite[J]. Chi.nese Journal of Space Science, 2007, 27(4): 342-346.

    [11] [11] Bender P L, Hall J L, Ye J, et al. Satellite-satellite laser links for future gravity missions[J]. Space Science Re. views, 2003, 108(1): 377-384.

    [12] [12] Sheard B S, Heinzel G, Danzmann K, et al. Intersatellite laser ranging instrument for the GRACE follow-on mis. sion[J]. Journal of Geodesy, 2012, 86(12): 1083-1095.

    [13] [13] Wilkinson M, Schreiber U, Procházka I, et al. The next generation of satellite laser ranging systems[J]. Journal of Geodesy, 2019, 93(11): 2227-2247.

    [14] [14] Kilpel. A, Pennala R, Kostamovaara J. Precise pulsed time-of-flight laser range finder for industrial distance measurements[J]. Review of Scientific Instruments, 2001, 72(4): 2197-2202.

    [15] [15] Matsumoto H. Infrared He-Xe laser interferometry for mea. suring length[J]. Applied Optics, 1981, 20(2): 231-234.

    [16] [16] Ye J, Schnatz H, Hollberg L W. Optical frequency combs:from frequency metrology to optical phase control[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(4): 1041-1058.

    [17] [17] Newbury N R, Washburn B R. Theory of the frequency comb output from a femtosecond fiber laser[J]. IEEE Jour. nal of Quantum Electronics, 2005, 41(11): 1388-1402.

    [18] [18] Diddams S A. The evolving optical frequency comb [Invit. ed][J]. J Opt Soc Am B, 2010, 27(11): B51-B62.

    [19] [19] Newbury N R. Searching for applications with a fine-tooth comb[J]. Nat Photon, 2011, 5(4): 186-188.

    [20] [20] Kim J, Song Y. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applica. tions[J]. Advances in Optics and Photonics, 2016, 8(3): 465-540.

    [21] [21] Shi H, Song Y, Li R, et al. Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement[J]. Nanotechnology and Precision Engineering, 2018, 1(4): 205-217.

    [22] [22] Ye J. Absolute measurement of a long, arbitrary distance to less than anoptical fringe[J]. Opt Lett, 2004, 29(10): 1153-1155.

    [23] [23] Cui M, Schouten R N, Bhattacharya N, et al. Experimental demonstration of distance measurement with a femtosec. ond frequency comb laser[J]. Journal of the European Opti. cal Society-Rapid Publications, 2008, 3(08003).

    [24] [24] Cui M, Zeitouny M G, Bhattacharya N, et al. High-accura. cy long-distance measurements in air with a frequency comb laser[J]. Opt Lett, 2009, 34(13): 1982-1984.

    [25] [25] Lee J, Kim Y-J, Lee K, et al. Time-of-flight measurement with femtosecond light pulses[J]. Nat Photon, 2010, 4 (10): 716-720.

    [26] [26] Lee J, Lee K, Lee S, et al. High precision laser ranging by time-of-flight measurement of femtosecond pulses[J]. Mea. surement Science and Technology, 2012, 23(6): 065203.

    [27] [27] Qin P, Chen W, Song Y J, et al. Long range absolute dis. tance measurement based on femtosecond laser balanced optical cross-correlation[J]. Acta Physica Sinica, 2012, 61(24): 240601.

    [28] [28] Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nat Photon, 2009, 3(6): 351-356.

    [29] [29] Liu T-A, Newbury N R, Coddington I. Sub-micron abso. lute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers[J]. Optics Express, 2011, 19(19): 18501-18509.

    [30] [30] Zhang H Y, Wei H Y, Wu X J, et al. Absolute distance measurement by dual-comb nonlinear asynchronous opti. cal sampling[J]. Optics Express, 2014, 22(6): 6597-6604.

    [31] [31] ShiHS, Song Y J, Liang F, et al. Effect of timing jitter on time-of-flight distance measurements using dual femtosec.ond lasers[J]. Optics Express, 2015, 23(11): 14057-14069.

    [32] [32] D.ndliker R, Thalmann R, Prongué D. Two-wavelength la.ser interferometry using superheterodyne detection[J]. Op. tics Letters, 1988, 13(5): 339-341.

    [33] [33] Minoshima K, Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compactfemtosecond laser[J]. Applied Optics, 2000, 39(30): 5512-5517.

    [34] [34] Joo K-N, Kim S-W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse la. ser[J]. Opt Express, 2006, 14(13): 5954-5960.

    [35] [35] Le.undák A, Voigt D, Cip O, et al. High-accuracy long distance measurements with a mode-filtered frequency comb[J]. Optics Express, 2017, 25(26): 32570-32580.

    [36] [36] van den Berg S A, Persijn S T, Kok G J P, et al. Many-wavelength interferometry with thousands of lasers for ab.solute distance measurement[J]. Physical Review Letters, 2012, 108(18): 183901.

    [37] [37] van den Berg S A, van Eldik S, Bhattacharya N. Mode-re. solved frequency comb interferometry for high-accuracy long distance measurement[J]. Scientific Reports, 2015, 5(14661).

    [38] [38] Joo K-N, Kim Y, Kim S-W. Distance measurements by combined method based on a femtosecond pulse laser[J]. Opt Express, 2008, 16(24): 19799-19806.

    [39] [39] Kieu K, Mansuripur M. All-fiber bidirectional passively mode-locked ring laser[J]. Optics Letters, 2008, 33(1): 64-66.

    [40] [40] Zhao X, Zheng Z, Liu L, et al. Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a sin. gle-wall carbon nanotube modelocker and intracavity loss tuning[J]. Optics Express, 2011, 19(2): 1168-1173.

    [41] [41] Link S M, Klenner A, Mangold M, et al. Dual-comb mode. locked laser[J]. Optics Express, 2015, 23(5): 5521-5531.

    [42] [42] Ideguchi T, Nakamura T, Kobayashi Y, et al. Kerr-lens mode-locked bidirectional dual-comb ring laser for broad. band dual-comb spectroscopy[J]. Optica, 2016, 3(7): 748-753.

    [43] [43] LiRM, ShiH S, Tian HC, etal.All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnacloopfilter[J].OpticsExpress, 2018, 26(22):28302-28311.

    [44] [44] Lin B, Zhao X, He M, et al. Dual-comb absolute distance measurement based on a dual-wavelength passively mode-Locked laser[J]. IEEE Photonics Journal, 2017, 9(6):1-8.

    [45] [45] ShiHS, Song Y J, Li T, et al. Timing jitter of the dual-comb mode-locked laser: a quantum origin and the ulti. mate effect on high-speed time-and frequency-domain me. trology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5):1-10.

    [46] [46] Herr T, Brasch V, Jost J D, et al. Temporal solitons in opti. cal microresonators[J]. Nature Photonics, 2014, 8(2): 145-152.

    [47] [47] Stone J R, Briles T C, Drake T E, et al. Thermal and non. linear dissipative-solitondynamics in Kerr-microresonator frequency combs[J]. Physical Review Letters, 2018, 121(6): 063902.

    [48] [48] Li J, Lee H, Chen T, et al. Low-pump-power, low-phase. noise, and microwave to millimeter-wave repetition rate operation in microcombs[J]. Physical Review Letters, 2012, 109(23): 233901.

    [49] [49] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical rang. ing using microresonator soliton frequency combs[J]. Sci. ence, 2018, 359(6378): 887-891.

    [50] [50] Suh M-G, Vahala K J. Soliton microcomb range measure. ment[J]. Science, 2018, 359(6378): 884-887.

    [51] [51] Wang J D, Lu Z Z, Wang W Q, et al. Long-distance rang.ing with high precision using a soliton microcomb[J]. Pho. tonics Research, 2020, 8(12): 1964-1972.

    Tools

    Get Citation

    Copy Citation Text

    QIN Peng, WANG Si-jia. Progress in High-precision Distance Measurement Based on Optical Frequency Combs (Invited)[J]. Electro-Optic Technology Application, 2021, 36(5): 42

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 12, 2021

    Accepted: --

    Published Online: Dec. 1, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics