Infrared and Laser Engineering, Volume. 49, Issue 8, 20190501(2020)

Opto-mechanical system structure and research progress of space-borne lidar for cloud-aerosol

Lu Li1... Chenbo Xie2, Peng Zhuang2, Kunming Xing2, Zhiyuan Fang2, Yufei Chu2, Jiadi Shao2 and Bangxin Wang2,* |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Atmospheric Optics, Anhui institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
  • 2Key Laboratory of Atmospheric Optics, Anhui institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
  • show less
    Figures & Tables(37)
    Schematic of LITE
    LITE instrument on orbit
    LITE system functional diagram
    CALIOP Optomechanical system
    Functional block diagram of CALIOP
    CALIOP payload
    CATS instrument on oribit
    CATS – ISS payload
    Work table for laser1 emitted 532 and 1 064 nm
    Solid model of LOM 2 and its THG on a platform
    Telescope
    Detector standard boxes for Mode 1 (LFOV and RFOV) and Mode 3
    Satellite and instruments observation geometry
    ATLID sampling and measurement principle
    ATLID opto-mechanical system
    Instrument functional architecture
    Beam steering mechanism
    Power laser head mechanical structure
    Beam expander
    Telescope and primary mirror structure
    Aft optical path system
    High spectral resolution filtering optical principle
    Incoming filter
    Cutoff filter
    Fibre coupler
    Co-alignment sensor STM
    High spectral resolution etalon
    Principle of Cassegrain telescope
    Detection principle of hyperspectral resolution lidar
    • Table 1.

      Detection mission of the LITE

      LITE探测任务

      View table
      View in Article

      Table 1.

      Detection mission of the LITE

      LITE探测任务

      TroposphereStratosphereCloudEarth’s surface
      Relationship between aerosol scattering ratio and wavelength height and structure of PBL Optical thickness of PBLRelationship between aerosol scattering ratio and wavelength atmospheric density and temperature within 40 kmVertical distribution, cloud cover reflectivity, optical thicknessReflectivity relation between backscatter and incident angle
    • Table 2.

      Laser performance parameters

      激光器性能参数

      View table
      View in Article

      Table 2.

      Laser performance parameters

      激光器性能参数

      ItemValue
      Output wavelenth/nm1 064532355
      Laser A output energy/mJ470530170
      Laser A beam divergence/mrad1.81.10.9
      Laser B output energy/mJ440560160
      Laser B beam divergence/mrad1.81.21.1
      Pulse repetition rate/Hz10
      Pulse width/ns27
    • Table 3.

      Receiving system parameters

      接收系统参数

      View table
      View in Article

      Table 3.

      Receiving system parameters

      接收系统参数

      ItemValue
      Aft opticsWavelength/nm1 064532355
      Quantum efficiency331421
      Color filter bandwidth/nm67526560
      Interference filter bandwidth/nm0.80.351
      Interference gilter transmission46%45%33%
      Optical throughput (night)64%45%42%
      Optical throughput (day)29%20%14%
      Field of view (all wavelengths) Selectable:1.1 mrad, 3.5 mrad, annular, blocked
      TelescopePrimary mirror diameter/in37.25
      Secondary mirror diameter/in12.25
      Focal length189.0
      Focal ratioF/5.1
      Obscuration ratio0.11
    • Table 4.

      CALIOP transmitter system parameters

      CALIOP发射系统参数

      View table
      View in Article

      Table 4.

      CALIOP transmitter system parameters

      CALIOP发射系统参数

      ItemValue
      LaserDiode-pumped Nd:YAG
      Pulse energy110 mJ:1 064 nm
      110 mJ:532 nm
      Pep rate20.16 Hz
      Pulse length20 ns
      Line width30 pm
      Polarization purity>1 000∶1 (532 nm)
      Beam divergence (after beam expander)
      Boresight range±1°,1.6 μrad steps
      Laser environment18 psia, dry air
    • Table 5.

      CALIOP receiving system parameters

      CALIOP接收系统参数

      View table
      View in Article

      Table 5.

      CALIOP receiving system parameters

      CALIOP接收系统参数

      ItemValue
      Telescope diameter1 m
      Field of view/mrad130(full angle)
      Digitizer sample rate/MHz10
      Vertical sample spacing/m15
      Electronic bandwidth/MHz2.0
      Vertical resolution as determined by bandwidth/m30
      Digitizer resolution/bits14
      Maximum dynamic range(merged)2.5 E6(>21 bits)
      532 nm channel
      DetectorPMT
      Etalon passband/pm37
      Etalon peak transmission85%
      Blocking filter/pm770
      1 064 nm channel
      DetectorAPD
      Optical passband/pm450
      Peak transmission84%
    • Table 6.

      CATS main science modes

      CATS主要科学模式

      View table
      View in Article

      Table 6.

      CATS main science modes

      CATS主要科学模式

      Science mode 1 Backsctter:532,1 064 nm No HSRL Depolarization: 532,1 064 nm Science mode 2 Backsctter:532,1 064 nm HSRL:532 nm Depolarization: 1 064 nm Science mode 3 Backsctter:355,532,1 064 nm No HSRL Depolarization: 532,1 064 nm Science modes 4,5,6 Backup mode Use laser 2 and receiver from mode 1
    • Table 7.

      Performance parameters of laser 1

      激光器1性能参数

      View table
      View in Article

      Table 7.

      Performance parameters of laser 1

      激光器1性能参数

      ItemParameters
      Laser1Nd:YVO4
      Repetition rate5 000 Hz
      Output divergence532 nm:0.75 mrad to 1.125 mrad
      1 064 nm: 0.75 mrad to 1.8 mrad
      Output beam diameter532 nm:<1 300
      1 064 nm:<1 300
      Output beam energy2 mJ: 532 nm
      2 mJ: 1 064 nm
      Wavelength532.12 nm
      1 064.25 nm
      Line width532 nm:45 pm
      1 064 nm:100 nm
      Pulse width532 nm:<10 ns
      1 064 nm:<10 ns
      M2532 nm:1.1-1.2
      1 064 nm:1.2-13
      Polarization532 nm:>100:1
      532 nm: >100:1
    • Table 8.

      Performance parameters of laser 2

      激光器2性能参数

      View table
      View in Article

      Table 8.

      Performance parameters of laser 2

      激光器2性能参数

      Laser2Injection-seeded, pulsed Nd: YVO4
      2 wavelengths3 wavelengths
      Repetition rate4000 Hz
      Output divergence355 nmN/A0.7 mrad to 1.875 mrad
      532 nm0.75 mrad to 1.125 mrad1.275 mrad to 1.875 mrad
      1 064 nm0.75 mrad to 1.8 mrad1.275 mrad to 3 mrad
      Output beam diameter355 nmN/A<1300
      532 nm<1300
      1 064 nm
      Output beam energy355 nmN/A2 mJ
      532 nm2 mJ
      1 064 nm
      Wavelength355 nmN/A354.75
      532 nm532.12 nm532.12 nm
      1 064 nm1064.25 nm1064.25 nm
      Line width355 nmN/A0.08 pm
      532 nm<0.5 pm0.145 pm
      1 064 nm0.5 pm
      Pulse width355 nmN/A<10 ns
      532 nm<10 ns
      1 064 nm
      M2355 nmN/A1.08
      532 nm1.251.5
      1 064 nm1.393.1
      Polarization355 nmN/A>100∶1
      532 nm>100∶1
      1 064 nm
    Tools

    Get Citation

    Copy Citation Text

    Lu Li, Chenbo Xie, Peng Zhuang, Kunming Xing, Zhiyuan Fang, Yufei Chu, Jiadi Shao, Bangxin Wang. Opto-mechanical system structure and research progress of space-borne lidar for cloud-aerosol[J]. Infrared and Laser Engineering, 2020, 49(8): 20190501

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 激光器与激光光学

    Received: Dec. 18, 2019

    Accepted: --

    Published Online: Dec. 31, 2020

    The Author Email: Wang Bangxin (bxwang@aiofm.ac.cn)

    DOI:10.3788/IRLA20190501

    Topics