Journal of the Chinese Ceramic Society, Volume. 49, Issue 12, 2636(2021)
Preparation and Performance of Pr1.8Ba0.2Ni0.5Cu0.4Co0.1O4+δ Cathode Toward Proton Conducting Solid Oxide Fuel Cell
[1] [1] NEUROLOGY T L. Air pollution and brain health: an emerging issue[J]. Lancet Neurol, 2018, 17(2): 103.
[2] [2] JORGENSEN J T, JOHANSEN M S, RAVNSKJOR L, et al. Long-term exposure to ambient air pollution and incidence of brain tumours: The Danish nurse cohort[J]. Neurotoxicology, 2016, 55: 122-130.
[3] [3] PERERA F P. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change[J]. Environ Health Perse, 2017, 125(20): 141-148.
[4] [4] PERERA F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist[J]. Int J Env Res Pub He, 2017, 15(1): 16.
[6] [6] SAHA A K, CHOWDHURY S, CHOWDHURY S P, et al. Application of solid-oxide fuel cell in distributed power generation[J]. Iet Renewable Power Generation, 2007, 1(4): 193-202.
[7] [7] NICU B, PHATIPHAT T. Real-time strategies to optimize the fueling of the fuel cell hybrid power source: A review of issues, challenges and a new approach[J]. Renew Sust Energ Rev, 2018, 91: 1089-1102.
[9] [9] ANDUJAR J M, SEGURA F. Fuel cells: History and updating. A walk along two centuries[J]. Renew Sust Energ Rev, 2009(13): 2309-2322.
[10] [10] KARUPPIAH K, ASHOK A. Review on proton and oxide ion conducting perovskite materials for SOFC applications[J]. Nano Energy, 2019, 8(1): 1-8.
[11] [11] RASHID N L, SAMAT A A, JAIS A A, et al, Review on zirconate-cerate-based electrolytes for proton-conducting solid oxide fuel cell[J]. Ceram Int, 2019, 45(6): 6605-6615.
[12] [12] ZAJAC W, RUSINEK D, ZHENG K, et al. Applicability of Gd-doped BaZrO3, SrZrO3, BaCeO3 and SrCeO3 proton conducting perovskites as electrolytes for solid oxide fuel cells[J]. Cent Eur Chem, 2013, 11(4): 471-484.
[13] [13] WANG Z Q, YANG W Q, SHAFI S P, et al. A high performance cathode for proton conducting solid oxide fuel cells[J]. J Mater Chem A, 2015, 3(16): 8405-8412.
[15] [15] DUAN C C, KEE R J, ZHU H, et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells[J]. Nature, 2018, 557(7704): 217-222.
[17] [17] DUAN C C, TONG J H, SHANG M et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures[J]. Science, 2015, 349 (6254): 1321-1326.
[18] [18] STRANDBAKKE R, CHEREPANOV V A, ZUEVET A Y et al. Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells[J]. Solid State Ionics, 2015, 278(1): 120-132.
[19] [19] CHOI S, KUCHARCZYK C J, LIANG Y G et al., Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells[J]. Nat energy, 2018, 3 (3): 202- 210.
[20] [20] POETZSCH D,MERKLE R,MAIER J. Proton conductivity in mixed-conducting BSFZ perovskite from thermogravimetric relaxation.[J]. Phys Chem Chem Phys, 2016, 16(31): 16446-16453.
[21] [21] YASHIMA M, ENOKI M, WAKITA T, et al. Structural disorder and diffusional pathway of oxide ions in a doped Pr2NiO4-based mixed conductor[J]. J Am Chem Soc, 2008, 130(9): 2762-2763.
[22] [22] GRIMAUD A, MAUVY F, BASSAT J M, et al. Hydration and transport properties of the Pr2 xSrxNiO4+δ compounds as H+-SOFC cathodes[J]. J Mater Chem A, 2021,9: 154-195
[23] [23] BOEHM E, BASSAT J M, DORDOR P, et al. Oxygen diffusion and transport properties in non-Stoichiometric Ln2 b xNiO4+δ oxides[J]. Solid State Ionics, 2005, 176(37-38): 2717-2725.
[24] [24] LI W Y, GUAN B, MA L, et al. High performing triple-conductive Pr2NiO4+δ anode for proton-conducting steam solid oxide electrolysis cell[J]. J Mater Chem A, 2018, 6: 19113-19124.
[25] [25] DING H, WU W, JIANG C, et al. Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production[J]. Nat Commun, 2020, 11(1), 1907.
[26] [26] WANG Y, CHENG J, JIANG Q, et al. Preparation and electrochemical performance of Pr2Ni0.6Cu0.4O4 cathode materials for intermediate- temperature solid oxide fuel cells[J]. J Power Sources, 2011, 196(6): 3104-3108.
[27] [27] XUE J, SCHULZ A, WANG H, et al. The phase stability of the Ruddlesden-Popper type oxide (Pr0.9La0.1)2.0Ni0.74Cu0.21Ga0.05O4+δ in an oxidizing environment[J]. J Membr Sci, 2015, 497(1): 357-364.
[28] [28] YASHIMA M, SIRIKANDA N, ISHIHARA T. Crystal structure, diffusion path, and oxygen permeability of a Pr2NiO4-based mixed conductor (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+ δ[J]. J Am Chem Soc, 2010, 132(7): 2385-2392.
[29] [29] WEI Y Y, RAVKINA O, KLANDE T, et al. Effect of CO2 and SO2 on oxygen permeation and microstructure of (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05) O4+δ membranes[J]. J Membr Sci, 2013(15), 429: 147-154.
[30] [30] AGUADERO A, ALONSO J A, ESCUDERO M J, et al. Evaluation of the La2Ni1 -xCuxO4+δ system as SOFC cathode material with 8YSZ and LSGM as electrolytes[J]. Solid State Ionics, 2008, 179(11-12): 393-400.
[31] [31] LI G, JIN H Y, CUI Y X, et al. Application of a novel (Pr0.9La0.1)2(Ni0.74Cu0.21Nb0.05) O4+δ-infiltrated BaZr0.1Ce0.7Y0.2O3-δ cathode for high performance protonic ceramic fuel cells[J]. J Power Sources, 2017, 341(12): 192-198.
[32] [32] WANG Y, CHENG J, JIANG Q, et al. Preparation and electrochemical performance of Pr2Ni0.6Cu0.4O4 cathode materials for intermediate- temperature solid oxide fuel cells[J]. J Power Sources, 2011, 196(6): 3104-3108.
[33] [33] ISTOMIN S Y, KARAKULINA O M, ROZOVA M G, et al. Tuning the high-temperature properties of Pr2NiO4+δ by simultaneous Pr- and Ni- cations replacement[J]. RSC Adv, 2016, 6(40): 33951-33958.
[34] [34] CHAKER H, RAIES I, CHOUKET A, et al. Chemical and physical characterizations of the n = 1 Ruddlesden-Popper phases: Nd2 - ySryNi1 - xCoxO4 ± δ (y = 1 and 0.1≤ x ≤ 0.9)[J]. Ionics, 2017, 23: 2229-2240.
[35] [35] KULKARNI A K, SCHULZ K H, LIM T S, et al., Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques. [J]. Thin solid films, 1999. 345(2): 273-277.
[37] [37] RAMESH C B, KOUSHIK B. Novel way of phase stability of LSGM and its conductivity enhancement[J]. Int J Hydrog Energy, 2015, 40(1): 509-518.
[40] [40] REN R Z, WANG Z H, XU C M, et al. Tuning the defect of triple conducting oxide BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite toward activity enhanced cathode of protonic ceramic fuel cells[J]. J Mater Chem A, 2019,7(31): 18365-18372.
[41] [41] SHEN Y, ZHAO H, XU J, et al. Effect of ionic size of dopants on the lattice structure, electrical and electrochemical properties of La2 -xMxNiO4+δ (M=Ba, Sr) cathode materials[J]. Int J Hydrog. Energy, 2014, 39 (2): 1023-1029.
Get Citation
Copy Citation Text
Li Tingting, Wang Zhenhua, Sun Wang, Bai Yu, Sun Kening, Qiao Jinshuo. Preparation and Performance of Pr1.8Ba0.2Ni0.5Cu0.4Co0.1O4+δ Cathode Toward Proton Conducting Solid Oxide Fuel Cell[J]. Journal of the Chinese Ceramic Society, 2021, 49(12): 2636
Category:
Received: Jan. 5, 2021
Accepted: --
Published Online: Feb. 11, 2022
The Author Email: Jinshuo Qiao (qjinshuo@bit.edu.cn)
CSTR:32186.14.