Laser & Optoelectronics Progress, Volume. 59, Issue 23, 2314003(2022)

Simulation of Thermal Behavior of Selective Laser Melting High Strength Aluminum Alloy

Xuehui Yang, Zhengyan Zhang*, and shun Wang
Author Affiliations
  • School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130
  • show less
    References(23)

    [1] Li Z Y, Yang B, Wang P C et al. Research status and trend of metal 3D printing technology[J]. New Technology & New Process, 25-28(2017).

    [2] DebRoy T, Wei H L, Zuback J S et al. Additive manufacturing of metallic components: process, structure and properties[J]. Progress in Materials Science, 92, 112-224(2018).

    [3] Yang Y Q, Wu W H, Lai K X et al. Newest progress of direct rapid prototyping of metal part by selective laser melting[J]. Aeronautical Manufacturing Technology, 49, 73-76, 97(2006).

    [4] Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field[J]. Materials China, 34, 658, 684-688(2015).

    [5] Tang Y, Loh H T, Wong Y S et al. Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts[J]. Journal of Materials Processing Technology, 140, 368-372(2003).

    [6] Dong P, Li Z H, Yan Z Y et al. Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 35, 607-611(2015).

    [7] Liverani E, Toschi S, Ceschini L et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel[J]. Journal of Materials Processing Technology, 249, 255-263(2017).

    [8] Amato K. Comparison of microstructures and properties for a Ni-base superalloy (alloy 625) fabricated by electron beam melting[J]. Journal of Materials Science Research, 1, 435-438(2012).

    [9] Kobryn P A, Semiatin S L. Mechanical properties of laser-deposited Ti-6Al-4V[J]. Solid Freeform Fabrication Proceedings, 6-8(2001).

    [10] Thijs L, Kempen K, Kruth J P et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 61, 1809-1819(2013).

    [11] Brandl E, Heckenberger U, Holzinger V et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 34, 159-169(2012).

    [12] Oper A F P I, Dewitt D P, Bergman T L et al[M]. Fundamentals of heat and mass transfer, 563-564(2005).

    [13] Wang X J, Wang X C, Yi X B et al. Impact of powder characteristics on formation properties of selective laser melted Al-Si alloy[J]. Shandong Science, 29, 30-35(2016).

    [14] Zhang W Q. Investigation on process and performance of AlSi10Mg parts fabricated by selective laser melting[D](2015).

    [15] Zhang H, Zhu H H, Qi T et al. Selective laser melting of high strength Al-Cu-Mg alloys: processing, microstructure and mechanical properties[J]. Materials Science and Engineering: A, 656, 47-54(2016).

    [16] Nie X J, Zhang H, Zhu H H et al. analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: from single tracks to cubic samples[J]. Journal of Materials Processing Technology, 256, 69-77(2018).

    [17] Zhang H, Zhu H H, Nie X J et al. Fabrication and heat treatment of high strength Al-Cu-Mg alloy processed using selective laser melting[J]. Proceedings of SPIE, 9738, 97380X(2016).

    [18] Luo X L, Liu M H, Li Z H et al. Effect of different heat-source models on calculated temperature field of selective laser melted 18Ni300[J]. Chinese Journal of Lasers, 48, 1402005(2021).

    [19] Li R D, Liu J H, Shi Y S et al. Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. The International Journal of Advanced Manufacturing Technology, 59, 1025-1035(2012).

    [20] Liu Y, Pang Z C, Zhang J. Comparative study on the influence of subsequent thermal cycling on microstructure and mechanical properties of selective laser melted 316L stainless steel[J]. Applied Physics A, 123, 688(2017).

    [21] Andani M T, Dehghani R, Karamooz-Ravari M R et al. Spatter formation in selective laser melting process using multi-laser technology[J]. Materials & Design, 131, 460-469(2017).

    [22] Wang D, Wu S B, Fu F et al. Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties[J]. Materials & Design, 117, 121-130(2017).

    [23] Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials & Design, 63, 856-867(2014).

    Tools

    Get Citation

    Copy Citation Text

    Xuehui Yang, Zhengyan Zhang, shun Wang. Simulation of Thermal Behavior of Selective Laser Melting High Strength Aluminum Alloy[J]. Laser & Optoelectronics Progress, 2022, 59(23): 2314003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Sep. 8, 2021

    Accepted: Nov. 8, 2021

    Published Online: Oct. 31, 2022

    The Author Email: Zhang Zhengyan (zzy@hebut.edu.cn)

    DOI:10.3788/LOP202259.2314003

    Topics