Acta Optica Sinica, Volume. 44, Issue 2, 0216001(2024)

Preparation and Optical Properties of Bi2Ga3.985O9∶1.5%Fe3+,Eu3+ Persistent Luminescent Nanoparticles

Aiwaili Ruxiangul1, Yanmei Sun1, Nuermaiti Kuerbanjiang1, Tianqi Zhao1, Abdurahman Renagul1、*, and Xuebo Yin2、**
Author Affiliations
  • 1Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844000, Xinjiang , China
  • 2Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • show less
    References(45)

    [1] Yang Q T, Risalat E, Sun Y M et al. Enhancement of near-infrared persistent luminescence of BaGa2O4∶Cr3+ by Sm3+ ion doping[J]. Chinese Journal of Lasers, 50, 0603003(2023).

    [2] Wu S Q, Qiao Z H, Li Y et al. Persistent luminescence nanoplatform with fenton-like catalytic activity for tumor multimodal imaging and photo-enhanced combination therapy[J]. ACS Applied Materials & Interfaces, 12, 25572-25580(2020).

    [3] Zhang K Y, Yu Q, Wei H J et al. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing[J]. Chemical Reviews, 118, 1770-1839(2018).

    [4] Abdurahman R, Yang T S, Liu W G et al. Synthesis and photoluminescence properties of Zn1+xGa2-0.01-yGexO3x+4∶0.01Cr, yBi persistent luminescence nanoparticles[J]. Laser & Optoelectronics Progress, 58, 2116001(2021).

    [5] Yang F, Fu R L, Tang Y et al. Long afterglow characteristics of γ-ray irradiated SrAl2O4∶Eu2+, Dy3+ phosphor[J]. Acta Optica Sinica, 37, 0116001(2017).

    [6] Chen L J, Zhao X, Yan X P. Cell-penetrating peptide-functionalized persistent luminescence nanoparticles for tracking J774A.1 macrophages homing to inflamed tissues[J]. ACS Applied Materials & Interfaces, 11, 19894-19901(2019).

    [7] Shi J P, Sun X, Zheng S H et al. A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy[J]. Biomaterials, 152, 15-23(2018).

    [8] Wang K, Yan L P, Shao K et al. Near-infrared afterglow enhancement and trap distribution analysis of silicon-chromium co-doped persistent luminescence materials Zn1+xGa2-2xSixO4∶Cr3+[J]. Journal of Inorganic Materials, 34, 983-990(2019).

    [9] Yang Q T, Abdurahman R, Yan Y et al. Brief introduction of Cr3+-doped persistent luminescence nanoparticles in biomedical applied research[J]. Laser & Optoelectronics Progress, 58, 0800003(2021).

    [10] Bessière A, Jacquart S, Priolkar K et al. ZnGa2O4∶Cr3+: a new red long-lasting phosphor with high brightness[J]. Optics Express, 19, 10131-10137(2011).

    [11] Zhao Y, Du J R, Wu X W et al. Enhanced near-infrared persistent luminescence in MgGa2O4∶Cr3+ through codoping[J]. Journal of Luminescence, 220, 117035(2020).

    [12] Yang Q T, Abdurahman R, Yang T S et al. Wavelength-tunable Barium gallate persistent luminescence phosphors with enhanced luminescence[J]. Chinese Optics Letters, 20, 031602(2022).

    [13] Kniec K, Tikhomirov M, Pozniak B et al. LiAl5O8∶Fe3+ and LiAl5O8∶Fe3+, Nd3+ as a new luminescent nanothermometer operating in 1st biological optical window[J]. Nanomaterials, 10, 189(2020).

    [14] Zhou Z H, Yi X D, Xiong P X et al. Cr3+-Free near-infrared persistent luminescence material LiGaO2∶Fe3+:optical properties, afterglow mechanism and potential bioimaging[J]. Journal of Materials Chemistry C, 8, 14100-14108(2020).

    [15] Zhou Z H, Zhang S A, Le Y K et al. Defect enrichment in near inverse spinel configuration to enhance the persistent luminescence of Fe3+[J]. Advanced Optical Materials, 10, 2101669(2022).

    [16] Belik A A, Wuernisha T, Kamiyama T et al. High-pressure synthesis, crystal structures, and properties of perovskite-like BiAlO3 and pyroxene-like BiGaO3[J]. Chemistry of Materials, 18, 133-139(2006).

    [17] Li J L, Guo J Q, Li H et al. Simultaneous realization of persistent luminescence and CT dual-mode imaging by X-ray recharged Bi2Ga4O9∶Cr nanoprobes in depth-independent tumors[J]. Chemical Engineering Journal, 406, 126008(2021).

    [18] Zhan Y F, Liu C G, Wang M W et al. Preparation, microstructure and optical properties of Cr3+ single-doped and Eu3+/Cr3+ co-doped GdAlO3 near infrared long persistent luminescent nanoparticles[J]. Spectroscopy and Spectral Analysis, 41, 80-87(2021).

    [19] Ye S, Liu Y, Liu W L et al. Luminescence, energy transfer and J-O theoretical analysis of Dy3+, Eu3+ co-doped NaGd (WO4)2 phosphor[J]. Journal of Shaanxi University of Science & Technology, 39, 101-107, 137(2021).

    [20] Deng J J, Xu S D, Hu W K et al. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer[J]. Biomaterials, 154, 24-33(2018).

    [21] Zheng S H, Shi J P, Wang X D et al. Flexible thermosensitive films based on shallow-trap persistent luminescence for high-resolution texture imaging of fingerprints even through latex gloves[J]. Journal of Materials Chemistry C, 9, 9619-9626(2021).

    [22] Liu J, Zhang X C, Zhong Q A et al. Electrostatic self-assembly of a AgI/Bi2Ga4O9 p-n junction photocatalyst for boosting superoxide radical generation[J]. Journal of Materials Chemistry A, 8, 4083-4090(2020).

    [23] Liang J K. The crystal structure was determined by X-ray powder diffraction[J]. Physics, 14, 115-120(1985).

    [24] Sun X F, Abdurahman R, Yang T S et al. Synthesis and luminescence properties of Cr, in co-doped small size MgGa2O4 near-infrared persistent luminescence nanoparticles[J]. Chemical Journal of Chinese Universities, 43, 9-21(2022).

    [25] Feng J H, Wu T T, Cheng Q et al. A microfluidic cathodic photoelectrochemical biosensor chip for the targeted detection of cytokeratin 19 fragments 21-1[J]. Lab on a Chip, 21, 378-384(2021).

    [26] Li X A, Li P, Li Y T et al. The structure and ferromagnetic properties of the single phase Bi0.95Eu0.05Fe0.95Co0.05O3 nanoparticles[J]. Journal of Functional Materials, 43, 387-389(2012).

    [27] Si D J, Geng B Y, Wang S Z. One-step synthesis and morphology evolution of luminescent Eu2+ doped strontium aluminate nanostructures[J]. CrystEngComm, 12, 2722-2727(2010).

    [28] McShera C, Colleran P J, Glynn T J et al. Luminescence study of LiGa5-xFexO8[J]. Journal of Luminescence, 28, 41-52(1983).

    [29] William B W, Masako M, David G et al. Absorption and luminescence of Fe3+ in single-crystal orthoclase[J]. American Mineralogist, 71, 1415-1419(1986).

    [30] Wu J, Zhang J L, Zhou W L et al. White-light emitting and energy transfer mechanism in the Ce3+, Tb3+ and Eu3+ co-doped Sr2MgSi2O7 phosphor[J]. Chemical Journal of Chinese Universities, 34, 306-312(2013).

    [31] Xue J P, Noh H M, Choi B C et al. Dual-functional of non-contact thermometry and field emission displays via efficient Bi3+→Eu3+ energy transfer in emitting-color tunable GdNbO4 phosphors[J]. Chemical Engineering Journal, 382, 122861(2020).

    [32] Zhuang Y X, Tanabe S. Conversion of valence state and coordination state of Fe in transparent glass-ceramics containing Li2ZnSiO4 nanocrystals[J]. Journal of the American Ceramic Society, 96, 2864-2869(2013).

    [33] Binnemans K. Interpretation of europium (Ⅲ) spectra[J]. Coordination Chemistry Reviews, 295, 1-45(2015).

    [34] Xia Y F, Bao G M, Peng X X et al. A highly water-stable dual-emission fluorescent probe based on Eu3+-loaded MOF for the simultaneous detection and quantification of Fe3+ and Al3+ in swine wastewater[J]. Analytica Chimica Acta, 1221, 340115(2022).

    [35] Silva A J S, Nascimento P A M, da Carvalho I S et al. Mechanisms and dynamics of energy transfer sensitization in the Eu3+, Cr3+ and Fe3+ ions in the LiAl5O8 phosphors[J]. Optical Materials, 128, 112420(2022).

    [36] Kim Y H, Arunkumar P, Kim B Y et al. A zero-thermal-quenching phosphor[J]. Nature Materials, 16, 543-550(2017).

    [37] Wang H J, Han M, Zhu C Y et al. Long-lasting phosphorescence in Nb5+ and Sm3+ codoped YTaO4[J]. Chinese Journal of Luminescence, 42, 1-9(2021).

    [38] Maldiney T, Lecointre A, Viana B et al. Trap depth optimization to improve optical properties of diopside-based nanophosphors for medical imaging[J]. Proceedings of SPIE, 8263, 826318(2012).

    [39] Zou R, Huang J J, Shi J P et al. Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence[J]. Nano Research, 10, 2070-2082(2017).

    [40] Meng X Y, Bao R T, Jin S et al. Afterglow enhancement of AlMgGaO4∶Cr3+, Ln3+ (Ln=Eu, Sm, Yb) guiding by VRBE diagram[J]. Optik, 222, 165325(2020).

    [41] Que M D, Que W X, Zhou T et al. Enhanced photoluminescence property of sulfate ions modified YAG∶Ce3+ phosphor by co-precipitation method[J]. Journal of Rare Earths, 35, 217-222(2017).

    [42] Kang R, Dou X J, Lian H W et al. SrAl12O19∶Fe3+@3-aminopropyl triethoxysilane∶ ambient aqueous stable near-infrared persistent luminescent nanocomposites[J]. Journal of the American Ceramic Society, 103, 258-265(2020).

    [43] Liu W, Cui R R, Deng C Y. Synthesis and luminescence properties of a novel near-infrared super-long afterglow material of Zn3Ga4GexO9+2x∶1%Cr3+[J]. Journal of Optoelectronics·Laser, 27, 150-155(2016).

    [44] Tuerdi A, Abdukayum A. Dual-functional persistent luminescent nanoparticles with enhanced persistent luminescence and photocatalytic activity[J]. RSC Advances, 9, 17653-17657(2019).

    [45] Yang Q, Liu Y L, Yu C X et al. Temperature dependence of luminescence property of SrAl2O4∶Eu2+, Dy3+ phosphors[J]. Chinese Journal of Inorganic Chemistry, 27, 1715-1720(2011).

    Tools

    Get Citation

    Copy Citation Text

    Aiwaili Ruxiangul, Yanmei Sun, Nuermaiti Kuerbanjiang, Tianqi Zhao, Abdurahman Renagul, Xuebo Yin. Preparation and Optical Properties of Bi2Ga3.985O9∶1.5%Fe3+,Eu3+ Persistent Luminescent Nanoparticles[J]. Acta Optica Sinica, 2024, 44(2): 0216001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Mar. 21, 2023

    Accepted: May. 31, 2023

    Published Online: Jan. 11, 2024

    The Author Email: Renagul Abdurahman (renagul111@aliyun.com), Yin Xuebo (xbyin@sues.edu.cn)

    DOI:10.3788/AOS230697

    Topics