Journal of Terahertz Science and Electronic Information Technology , Volume. 18, Issue 3, 351(2020)

Fast imaging technology of terahertz wave based on spatial modulator

ZHU Yunqiao, SHEN Zhaoyang, ZHANG Hao, HE Yulian, and WEN Qiye*
Author Affiliations
  • [in Chinese]
  • show less
    References(46)

    [1] [1] FEDERICI John F,SCHULKIN Brian,HUANG Feng,et al. THz imaging and sensing for security applications–explosives, weapons and drugs[J]. Semiconductor Science and Technology, 2005,20(7):266-280.

              FEDERICI John F,SCHULKIN Brian,HUANG Feng,et al. THz imaging and sensing for security applications–explosives, weapons and drugs[J]. Semiconductor Science and Technology, 2005,20(7):266-280.

    [2] [2] CHAN W L,DEIBEL J,MITTLEMAN D M. Imaging with terahertz radiation[J]. Reports on Progress in Physics, 2007,70(8): 1325–1379.

              CHAN W L,DEIBEL J,MITTLEMAN D M. Imaging with terahertz radiation[J]. Reports on Progress in Physics, 2007,70(8): 1325–1379.

    [3] [3] MARKELZ A G,ROITBERG A,HEILWEIL E J. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz[J]. Chemical Physics Letters, 2000,320(31):42-48.

              MARKELZ A G,ROITBERG A,HEILWEIL E J. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz[J]. Chemical Physics Letters, 2000,320(31):42-48.

    [4] [4] ODA N. Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging[J]. Comptes Rendus Physique, 2010,11(7-8):496–509.

              ODA N. Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging[J]. Comptes Rendus Physique, 2010,11(7-8):496–509.

    [5] [5] HU B B,NUSS M C. Imaging with terahertz waves[J]. Optics Letters, 1995,20(16):1716-1718.

              HU B B,NUSS M C. Imaging with terahertz waves[J]. Optics Letters, 1995,20(16):1716-1718.

    [6] [6] CHAN W L,MATTHEW L,BARANIUK R G,et al. Terahertz imaging with compressed sensing and phase retrieval[J]. Optics Letters, 2008,33(9):974-976.

              CHAN W L,MATTHEW L,BARANIUK R G,et al. Terahertz imaging with compressed sensing and phase retrieval[J]. Optics Letters, 2008,33(9):974-976.

    [7] [7] KANNEGULLA A,JIANG Z,RAHMAN S M,et al. Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams[J]. IEEE Transactions on Terahertz Science and Technology, 2014,4(3):321–327.

              KANNEGULLA A,JIANG Z,RAHMAN S M,et al. Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams[J]. IEEE Transactions on Terahertz Science and Technology, 2014,4(3):321–327.

    [8] [8] CHAN W L,CHARAN K,DHARMPAL T,et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008,93(12):121105-1-121105-3.

              CHAN W L,CHARAN K,DHARMPAL T,et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008,93(12):121105-1-121105-3.

    [9] [9] WATTS C M,SHREKENHAMER D,MONTOYA J,et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014,8(8):605-609.

              WATTS C M,SHREKENHAMER D,MONTOYA J,et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014,8(8):605-609.

    [10] [10] VOGEl T,DODEL G,HOLZHAUER E. High-speed switching of far-infrared radiation by photoionization in a semiconductor[J]. Applied Optics, 1992,31(3):329-337.

              VOGEl T,DODEL G,HOLZHAUER E. High-speed switching of far-infrared radiation by photoionization in a semiconductor[J]. Applied Optics, 1992,31(3):329-337.

    [11] [11] OKADA T,TANAKA K. Photo-designed terahertz devices[J]. Scientific Reports, 2011,121(1):1-5.

              OKADA T,TANAKA K. Photo-designed terahertz devices[J]. Scientific Reports, 2011,121(1):1-5.

    [12] [12] CHENG L J,LIU L. Optical modulation of continuous terahertz waves towards cost-effective reconfigurable quasi-optical terahertz components[J]. Optics Express, 2013,21(23):28657-28667.

              CHENG L J,LIU L. Optical modulation of continuous terahertz waves towards cost-effective reconfigurable quasi-optical terahertz components[J]. Optics Express, 2013,21(23):28657-28667.

    [13] [13] XIE Z W,WANG X K,YE J S. Spatial terahertz modulator[J]. Scientific Reports, 2013,3347(3):1-4.

              XIE Z W,WANG X K,YE J S. Spatial terahertz modulator[J]. Scientific Reports, 2013,3347(3):1-4.

    [14] [14] WEN T L,ZHANG D N,WEN Q Y. Enhanced optical modulation depth of terahertz waves by self-assembled monolayer of plasmonic gold nanoparticles[J]. Advanced Optical Materials, 2016,4(12):1974-1980.

              WEN T L,ZHANG D N,WEN Q Y. Enhanced optical modulation depth of terahertz waves by self-assembled monolayer of plasmonic gold nanoparticles[J]. Advanced Optical Materials, 2016,4(12):1974-1980.

    [15] [15] WEIS P,GARCIA-POMAR J L,HOH M. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 2012,6(10):9118-9124.

              WEIS P,GARCIA-POMAR J L,HOH M. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 2012,6(10):9118-9124.

    [16] [16] WEN Q Y,TIAN W,MAO Q. Graphene based all-optical spatial terahertz modulator[J]. Scientific Reports, 2014(4):7409-1- 7409-5.

              WEN Q Y,TIAN W,MAO Q. Graphene based all-optical spatial terahertz modulator[J]. Scientific Reports, 2014(4):7409-1- 7409-5.

    [17] [17] ZHANG B,HE T T, SHEN J L. Conjugated polymer-based broad band terahertz wave modulator[J]. Optics Letters, 2014,39(21):6110-6113.

              ZHANG B,HE T T, SHEN J L. Conjugated polymer-based broad band terahertz wave modulator[J]. Optics Letters, 2014,39(21):6110-6113.

    [18] [18] SHI Z W,CAO X X,WEN Q Y. Terahertz modulators based on silicon nanotip array[J]. Advanced Optical Materials, 2018, 6(2):1700620-1-1700620-8.

              SHI Z W,CAO X X,WEN Q Y. Terahertz modulators based on silicon nanotip array[J]. Advanced Optical Materials, 2018, 6(2):1700620-1-1700620-8.

    [19] [19] TEXAS INSTRUMENTS. DLP product description[EB/OL]. (2019)[2019-01-10]. http://www.ti.com.cn/product/cn/DLP7000.

              TEXAS INSTRUMENTS. DLP product description[EB/OL]. (2019)[2019-01-10]. http://www.ti.com.cn/product/cn/DLP7000.

    [20] [20] STANTCHEV R I,PHILLIPS D B,HOBSON P,et al. Compressed sensing with near-field THz radiation[J]. Optica, 2017, 4(8):989-992.

              STANTCHEV R I,PHILLIPS D B,HOBSON P,et al. Compressed sensing with near-field THz radiation[J]. Optica, 2017, 4(8):989-992.

    [22] [22] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006,52(4):1289-1306.

              DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006,52(4):1289-1306.

    [23] [23] CANDES E J,TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005,51(12):4203- 4215.

              CANDES E J,TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005,51(12):4203- 4215.

    [24] [24] SHREKENHAMER D,WATTS C M,PADILLA W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 2013,21(10):12507-12518.

              SHREKENHAMER D,WATTS C M,PADILLA W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 2013,21(10):12507-12518.

    Tools

    Get Citation

    Copy Citation Text

    ZHU Yunqiao, SHEN Zhaoyang, ZHANG Hao, HE Yulian, WEN Qiye. Fast imaging technology of terahertz wave based on spatial modulator[J]. Journal of Terahertz Science and Electronic Information Technology , 2020, 18(3): 351

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 26, 2019

    Accepted: --

    Published Online: Jul. 16, 2020

    The Author Email: Qiye WEN (qywen@163.com)

    DOI:10.11805/tkyda2019060

    Topics